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ABSTRACT

Tabular data are widely used in various fields, but their automatic
interpretation remains a challenge due to their structural hetero-
geneity and lack of explicit semantics. Solving the task of automatic
Table Question Answering requires overcoming a number of chal-
lenges, in particular, related to the low accuracy of current methods
and errors in numerical reasoning. This paper proposes a new ap-
proach based on pre-training a BART language model to generate
computational graphs. The graphs are analogous to the execution
plans of SQL queries in relational database management systems.
The approach replaces the direct execution of SQL queries by query
plan generation, which reduces computational complexity and min-
imizes errors associated with implicit computations. Experiments
are performed on a WikiSQL set containing 80 thousand examples.
Pre-training of the model is performed on 3.8 million pairs of SQL
queries and linearized tables, followed by fine-tuning. The results
demonstrate that the model achieves 95.1% denotation accuracy
on the test sample, outperforming the baseline TAPEX solution.
This opens up new opportunities for building table-based question-
answering intelligent systems combining high performance and
semantic consistency.
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1 INTRODUCTION

Tabular data remains one of the key means for structured presen-
tation of information in various fields such as finance, science,
and management. Their versatility and compactness make them
indispensable for data storage and analysis [2]. However, the het-
erogeneous structure of the tables, the lack of explicit semantics,
and the difficulties in automatic interpretation limit their practical
use in different intelligent systems [7, 22].
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One way to utilize the valuable information in the tables is to
develop ideas in the direction known as Table Question Answering
(TQA) [6, 13] - automatic generation of answers to questions based
on data presented in tabular form. TQA addresses the user’s ques-
tion in natural or logical language and aims to provide accurate and
correct answers through understanding and reasoning of tabular
data. Current TQA methods based on semantic parsing [4, 5, 8, 9, 13—
16, 21] or generative models [3, 11, 12, 17, 24] show progress but
face a number of difficulties even in test problems due to errors in
numerical reasoning, context dependencies, and query case.

In this paper, we propose a new TQA approach based on pre-
training a language model on computational graphs. Unlike existing
solutions, the proposed approach replaces direct query execution by
generating a query plan graph similar to the execution plan in rela-
tional database management systems. This reduces computational
complexity, improves accuracy, and minimizes errors associated
with implicit computations. Experiments conducted on the Wik-
iSQL test dataset [19] confirm the effectiveness of our approach:
After fine-tuning, the model achieves 95.1% denotation accuracy,
demonstrating case-resilience of SQL commands. Thus, the main
contributions include the following:

e We proposed a novel way to generate answers through
computational graphs, providing high accuracy and inter-
pretability.

e We prepared a large-scale pre-training dataset customized
for SQL query syntax.

e Experiments on the WikiSQL dataset show that the pro-
posed approach outperforms the baseline solution, which
confirms its effectiveness.

2 RELATED WORK

One of the directions in the field of automatic table understanding is
Table Question Answering (TQA) [6, 13]. TQA is at the intersection
of areas such as natural language processing and machine learning
and is a specialization of the scientific direction on the study of
question-answering systems.

We can distinguish the following models and methods to solve
the TQA problem [6]:

(1) Semantic parsing methods convert natural language
questions into logical forms (e.g., SQL) [20] , which are
then executed on source tables to obtain answers. These
approaches can be weakly supervised [9, 10, 14, 16, 23] or
fully supervised [4, 13, 15, 21], depending on how the logical
forms are constructed. TAPEX [8] has become a state-of-
the-art (SOTA) solution by pre-training language models on


https://github.com/YRL-AIDA/QueryPlanGenerator.git
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

tabular data and addressing data scarcity with a large-scale,
high-quality synthetic SQL corpus. Consequently, TAPEX
is widely used as a baseline for further fine-tuning, includ-
ing in the OmniTab approach [5]. OmniTab uses natural
(Wikipedia, WikiTableQuestion (WTQ) dataset!) and syn-
thetic (SQL2NL, SQUALL datasets?) data for training, using
an end-to-end response generation framework.

(2) Non-semantic-parsing-based methods generate answers
directly without constructing intermediate logical forms.
Generative models, such as FeTaQA [12], use end-to-end
pre-trained language models to encode questions and lin-
earized tables, producing free-form answers. A graph-based
generative approach [11] represents tables as graphs (with
columns, rows, and cells as nodes), encodes them via graph
neural networks, and generates responses using a transfor-
mer-based decoder. Alternatively, some methods extract the
answer spans directly from linearized tables, as in TaPaS [3]
and TAT-QA [24].

Over the past year, significant progress has been made in solving
the TQA problem, which is associated with the use of large lan-
guage models. In particular, the Chain-of-Table method [17] adapts
the Chain-of-Thought reasoning to tabular data by decomposing
questions and iteratively transforming tables using large language
models to derive answers. The Tool-Augmented Reasoning frame-
work for Tables (TART) approach [18] integrates LLM (CodeLlama)
with specialized tools to apply precise numerical reasoning.

Our approach uses an intermediate representation in the logical
form between the question and the answer, like classical semantic
parsing methods (e.g., TAPEX or OmniTab). However, instead of
direct SQL, it is a computational graph (query plan) generated by the
language model. Direct SQL execution is prone to implementation
errors, command case sensitivity, and the complexities of implicit
computations (especially numerical ones). Query plan generation
replaces SQL execution.

3 TABLE PRE-TRAINING VIA PLAN
GENERATION

3.1 Problem Statement

The TQA aims to generate an answer A for a given question Q on
atable T.

The source (input) tables for the proposed approach are relational
tables in the third normal form (3NF). This table represents a set of
similar entities in the form of a relation (a subset of the Cartesian
product of N data domains), where:

o Attribute (column name) is a name of the data domain
in the relation schema.

e Metadata (schema) is an ordered set of N attributes of a
relation table.

e Tuple (record) is an ordered set of N atomic values, one
for each attribute of a relation.

e Data (record set) is a set of tuples of a relation table.

!https://github.com/ppasupat/WikiTableQuestions
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In this case, the first row of the source table is a header containing
the names of attributes (columns), and the values of the column
cells have the same entity types and data types.

Questions are usually formulated in natural language or can be
presented using intermediate forms, for example, in the form of an
SQL query. Thus, the input data for our approach is a linearized
table T’, obtained on the basis of expanding a source table T into a
sequence of tokens, as well as a question Q, presented as an SQL
query. Then let’s formalize the problem as follows:

f(T',0) —» A (1)

where A is an answer that satisfies the following conditions:

e compliance with the question’s intent (semantic consis-
tency);

e logical consistency with tabular data;

e the answer can be obtained through operations acceptable
for the structure and data types of T’ (e.g., summing nu-
meric columns, filtering by condition).

Following the assumption made in [8], the core idea of our ap-
proach is that if a language model can be trained to accurately "ex-
ecute” SQL queries and produce the correct results, then it should
have a deep understanding of tables. In this study, we propose the
approach for pre-training a language model to generate a linearized
computational graph. Such a graph resembles the query plan pro-
duced by a relational DBMS when executing SQL queries over a
table. In this case, an accurately generated query plan is equivalent
to the result obtained from its execution in the computational mod-
ule. This plan generation does not require the model to perform
table operations to derive the result, as is done, for example, in the
Chain-of-Table method [17]. This fact conceptually simplifies the
generation task, thereby improving model performance, since all
transformations over the table can be performed by the software
module, especially mathematical operations. Thus, the answer A is
a query plan. Next, let’s take a closer look at the dataset preparation
and the specifics of the language model’s pre-training.

3.2 Pre-training Task

Figure 1 shows the general outline of the proposed language model
pre-training approach for generating a linearized computational
graph (query plan), consists of the following main steps:

(1) An executable SQL query Q is concatenated with a lin-
earized table T’ and passed to the input of the model.

(2) An SQL query Q' is executed on the source table T, which
is an SQL query Q with the addition of the analysis prefix
"EXPLAIN". The result is a plan P for executing an SQL
query Q.

(3) The resulting plan P is transformed into a linearized graph
plan P’.

(4) Training is performed, comparing the model-generated plan
MP with the resulting linearized graph plan P’.

A large language model - BART-large® with an appropriate tok-
enizer is used for pre-training. The BART architecture was chosen

Shttps://huggingface.co/facebook/bart-large
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Figure 1: The general outline of the proposed approach pre-trains a language model to generate a linearized computational
graph (query plan). It consists of: (1) An executable SQL query (Q) is concatenated with a linearized table (T’) and passed to the
input of the model. (2) An SQL query (Q’) is executed on the source table (T), which is a SQL query (Q) with the addition of the
analysis prefix "EXPLAIN". The result is a plan (P) for executing SQL query (Q). (3) The resulting plan (P) is converted into a
linearized graph plan (P’). (4) Training is performed to compare the model-generated plan (MP) with the obtained linearized

graph plan ().

as the foundation for our approach due to its unique hybrid de-
sign, which optimally aligns with the demands of computational
graph (query plan) generation. Moreover, BART underpins SOTA
TQA models like TAPEX, demonstrating superior table reasoning
capabilities. Our approach extends this strength to plan genera-
tion. During training, the cross-entropy function is used as the loss
function together with L2 regularization.

A concatenation of an SQL query Q and a linearized table T is
fed to the input of the model. During supervised training, the model
learns to generate a linearized query plan MP that was obtained by
executing Q over the table T".

After pre-training, the resulting model can be fine-tuned to fit dif-
ferent TQA datasets (e.g., WTQ, SQUALL, WikiSQL*, FeTaQA [12],
TabFact [1]).

3.3 Pre-training Dataset

A large-scale TAPEX dataset [8] was taken as a basis to perform
model pre-training. This dataset consists of five million pairs repre-
senting a question and an answer. The question consists of an SQL
query and a linearized table in the format: "col: col1 col2 ... row1: r1
r2 ... row2: ...". The response can be single or contain a serialized
array.

At the stage of data pre-processing, the corresponding SQL query
and table are extracted from the question, which then underwent
the delinearization procedure. At the same time, the table column
names and their mentions in the SQL query are converted to conven-
tional notations of the following type: "col_i", where i is a column

“https://github.com/salesforce/WikiSQL

index in a table for further parsing through the SQLGlot library”.
The question text is hashed using the hashlib.md5 library®, and from
the obtained hash by adding a special character "f" to the beginning
of the sequence. Thus, a unique name is formed to save the table to
the database for further processing. This approach avoids conflicts
and delays during parallel processing of the dataset. The data types
for all columns of the table are determined, and a reference to the
obtained table name is inserted into the SQL query via SQLGlot,
after which error correction is performed. The obtained table is
loaded into the PostgreSQL DBMS. A corrected SQL query with
the "EXPLAIN (ANALYZE, FORMAT XML)" prefix are executed on
the loaded table, which allows analyzing how exactly the query
is executed. The obtained XML string with the query plan is con-
verted into a simplified query graph plan, where the optimization
information, which is excessive for PostgreSQL, is filtered out. Such
a graph can consist of one or several vertices (nodes). In this case,
each node has the prefix "NODE" and the following attributes:

o Type is a type of operation such as scanning, grouping, etc.
o | width(i-w) is a node width index.
o i_depth(i-d) is an inverted depth index (leaf to root).
e Parent is a parent node name.
o Args is the operation arguments in the format: "argument
name: value", separated by symbol "|".
To ensure better sequential generation by the model, the graph
vertices are arranged in i_width order sequentially from leaf to root.
Figure 2 shows an example fragment of the trained dataset. In the

Shttps://github.com/tobymao/sqlglot
®https://docs.python.org/3/library/hashlib.html



end, the updated table is linearized similarly to the original table
and merged with the linearized graph into the input question.

Before feeding the model, the data are filtered by exceeding the
maximum input sequence length in tokens for the target model. In
particular, a large BART model is used for this approach, where the
maximum sequence length is 1024 tokens. Thus, 24% of the original
amount of data is lost after pre-processing and filtering. Figure 3
shows the percentage distribution of pairs in terms of response
complexity (query plan). Figure 4 shows the occurrence of different
SQL commands in the set.

4 EXPERIMENTS

4.1 Implementation Details

The pre-training on the query plan generation task was performed
on the compute cluster "Akademik V.M. Matrosov"’
the Matrosov Institute for System Dynamics and Control Theory
of the Siberian Branch of the Russian Academy of Sciences (ISDCT
SB RAS). We used two NVIDIA A100 80 GB PCle GPUs with batch
of 16 per card and a gradient accumulation factor of 8, giving a
total batch of 256. Thus, seed = 544, learning rate = 3¢, gradient
decay = 1e~%. The checkpoints were stored at the end of each epoch.
Training in the trained TAPEX dataset lasted 3 epochs and took 15
days. This training resulted in a Query Plan Generator model that
is capable of generating a query plan.

The fine-tuning on the query plan generation task on the Wik-
iSQL and SQUALL datasets was also performed on the two NVIDIA
A100 80 GB PCle GPUs with a batch of 16 per card and a gradient
accumulation factor of 4, giving a total batch of 128. Training lasted
20 epochs, seed = 544, learning rate = 3¢ >, gradient decay = le .
The checkpoints were stored at the end of each epoch. This fine-
tuning of the model took 24 hours for WikiSQL and 1.8 hours for
SQUALL.

on the basis of

4.2 Evaluation Datasets

WikiSQL is chosen as the main dataset to test the performance of
the proposed approach. SQL queries in this dataset include simple
queries such as SELECT, FROM, WHERE. The statistics on the SQL
commands used for the WikiSQL dataset is presented in Figure 5.

WikiSQL includes training (train), validation (dev) and test sam-
ples (test). After data pre-processing and filtering similar to that
described above, the following was lost 19%, 29%, 30% for train, dev,
and test, respectively.

SQUALL is selected as an additional dataset in evaluating the
performance of the proposed approach. After data pre-processing,
the dataset was randomly divided into train and test sets, where
the test set constituted 20% of the dataset. The resulting set, as can
be seen from the Figure 6, has a similar structure to the original set.

4.3 Evaluation Metrics

Denotation Accuracy (DA) [8] is used as the main evaluation metric,
which means that the answer provided by the system is considered
accurate only when it completely matches the reference content
without errors and assumptions. The metric is defined using the
following formula:

Thttps://hpc.icc.ru

P

where P is the number of exactly matching question-answer
pairs; N is the total number of question-answer pairs.

4.4 Main Results and Discussion

In this paper, the TAPEX approach [8] is chosen as a baseline solu-
tion for the performance comparison. In this paper, the proposed
approach focuses only on SQL query execution as a first step in
developing a pre-training method similar to TAPEX. The compar-
ison is made with the TAPEX SQL Executor model. This version
of TAPEX is trained on SQL query execution without fine-tuning
to answer questions asked in natural language. An experiment is
conducted to show how the basic pre-trained language models
(Query Plan Generator and TAPEX sql executor) are able to han-
dle SQL query answering without any pre-training. These models
were then fine-tuned on the WikiSQL and SQUALL datasets. In
addition, the experiments investigated the effect of SQL commands
written in uppercase letters on the test results (the base models of
the query plan generator and SQL TAPEX executor were trained
on sequences in which SQL commands are represented only by
lowercase letters). For this purpose, the base models of the query
plan generator and TAPEX were fine-tuned on WiKiSQL in two
modes: with commands written in lowercase and with commands
written in uppercase. The results of the experimental evaluation
are presented in Table 1 and Table 2.

Table 1: Comparative analysis of the results of the exper-
imental evaluation on the WikiSQL dataset for the Query
Plan Generator against the TAPEX SQL executor across pre-
training and fine-tuning stages. In our case, "up" means the
allocation of SQL commands to uppercase during testing; "tr"
means that the model was fine-tuned on data with commands
corrected to uppercase. Critical findings: (1) After fine-tuning,
our model achieves SOTA performance (95.1% on DA test);
(2) Superior case-robustness (DA test on pre-training stage:
about 5% with uppercase SQL vs TAPEX’s 20% sensitivity).

Model DA dev DA test

Pre-training stage

TAPEX sql-executor 40.4 41.0
TAPEX sql-executor (up) 54.8 61.1
Query Plan Generator 37.4 68.1
Query Plan Generator (up) 37.1 63.4
Fine-tuning stage

TAPEX sql-executor 73.8 76.0
TAPEX sql-executor (up) 78.5 80.0
TAPEX sql-executor (tr) 81.9 83.5
TAPEX sql-executor (tr+up) 81.5 83.2
Query Plan Generator (tr) 95.0 95.1
Query Plan Generator (tr+up) 94.1 94.2
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Figure 3: Statistics on the number of nodes in the query
plan for the original TAPEX dataset (base) and pre-processed
TAPEX dataset after filtering by exceeding the length of the
tokenized input sequence (token filter). The node count dis-
tribution across query plans in the processed TAPEX dataset
and after sequence-length filtering is the same. The right-
skewed distribution confirms the prevalence of moderately
complex operations (four or more nodes).
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Figure 4: Statistics on SQL commands used in the original
TAPEX dataset (base) and pre-processed TAPEX dataset af-
ter filtering by exceeding the length of the tokenized in-
put se- quence (filtered). SELECT/FROM/WHERE commands
dominate (about 80% occurrence), while complex operations
(JOIN/GROUP BY/ORDER BY) maintain proportional repre-
sentation post-filtering validating the dataset’s suitability
for query plan generation training.

As shown in Table 1, the Query Plan Generator model is inferior
to the TAPEX model on the validation set by 3%, but outperforms it
on the test set by 27.1%. After fine-tuning the Query Plan Generator
model and TAPEX sql-executor on WikiSQL still on the SQL query
execution task, but with half the batch size, the model results have
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Figure 5: Statistics on SQL commands used in the original
WikiSQL dataset (base) and pre-processed WikiSQL dataset
after filtering by exceeding the length of the tokenized
input sequence (filtered). We highlights the composition
of SQL operations in the WikiSQL evaluation set, domi-
nated by fundamental commands (about 97-100% for SE-
LECT/WHERE/FROM). The limited occurrence of aggrega-
tions (about 9-10% for COUNT/MAX/MIN) establishes a rig-
orous testbed for core TQA capabilities while aligning with
real-world query patterns.
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Figure 6: Statistics on SQL commands used in the SQUALL
dataset (base) and pre-processed SQUALL dataset after filter-
ing by exceeding the length of the tokenized input se- quence
(filtered). We illustrates the retention of SQL operation di-
versity in the SQuALL dataset after sequence-length filter-
ing. Essential SQL commands (SELECT/FROM/GROUP BY)
maintain near-complete representation (about 98%). Other
operations (e.g., WHERE, COUNT, MAX) show minimal at-
trition, preserving SQuALL’s signature challenge of nested
queries and multi-step reasoning. This robustness validates
the dataset’s utility for testing advanced TQA capabilities
under realistic token constraints.



Table 2: Comparative analysis of the results of the experimen-
tal evaluation on the SQuALL dataset for the Query Plan Gen-
erator against the TAPEX SQL executor across pre-training
and fine-tuning stages. In this case, contains an SQL com-
mands without taking into account the uppercase. Results
confirm: (1) Pre-trained TAPEX excels in zero-shot settings
(8.2% vs TAPEX’s 32.3%); (2) After fine-tuning, our model
achieves near-parity (72.8% vs TAPEX’s 73.9%), demonstrat-
ing its rapid adaptability to diverse SQL schemas despite
architectural differences in plan generation.

Model DA test
TAPEX sql-executor 323
Query Plan Generator 8.2
Fine-tuned TAPEX sql-executor 73.9

Fine-tuned Query Plan Generator 72.8

improved significantly and now the gain relative to TAPEX is +13.5%
on the validation set and +11.9% on the test set. Also, various modes
of fine-tuning and evaluating have shown that the allocation of SQL
commands leads to an improvement in the accuracy of the model
by an average of 3%. The results of the experiments for the base
models in Table 1 have shown that the sensitivity to the case of
SQL commands for the Query Plan Generator without fine-tuning
is more than 3 times lower than that of TAPEX. At the same time,
further fine-tuning on the allocated SQL commands leads to better
and less sensitive results to the spelling of SQL commands.
Additionally, we fine-tuned and tested the models on the SQUALL
dataset. As can be seen in the Table 2, the pre-trained TAPEX out-
performs in the zero-shot setting (8.2% vs. 32.3% for TAPEX), but
after fine-tuning, our model reaches near parity (72.8% vs. 73.9%
for TAPEX), demonstrating its fast adaptability to different SQL
schemas despite architectural differences in plan generation.

5 CONCLUSION

In this paper, we propose a novel approach for automatic question
answering on tabular data based on pre-training a BART language
model for generating computational graphs of SQL queries. Experi-
ments show that the model achieves 95.1% denotation accuracy on a
WikiSQL test sample after fine-tuning, outperforming baseline solu-
tions (TAPEX) and achieving parity results on the SQUALL dataset.
The key advantage of the approach is the reduced dependence
on the SQL command case and the ability to integrate program
modules for accurate computations, which is critical for numeric
data. The developed approach opens new opportunities for creating
intelligent table analysis systems combining high accuracy and
interpretability of results.

In the future, we plan to compare the Query Plan Generator
against SQL based benchmark systems. We also plan to implement
a computational software module for the query plan graph and
fine-tuning on well-known datasets such as WTQ and TabFact with
natural language questions and comparison with advanced models
in this context. In addition, we plan to include heterogeneous tables
with different structural layouts in the processing.
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