SEMFOREST: Semantic-Aware Ontology Generation with
Foundation Models

Guohui Guan® Sachin Konan® Larry Rudolph! Chang Ge®

TUniversity of Minnesota

SPrinceton University

IMIT CSAIL

{gguan, cge}@umn.edu, sk7524@princeton.edu, rudolph@csail.mit.edu

ABSTRACT

Functional Semantic Types (FSTs) enrich column-level semantics
by pairing type information with executable logic for data trans-
formation and validation. However, to our best knowledge, the
only existing FST generation method relies primarily on name-
based merging, resulting in flat, unstructured hierarchies that do
not align with real-world semantic structures. We introduce SEm-
FoRresT, a framework that constructs a tree-structured semantic
forest of FSTs. SEMFOREST produces the ontology with interpretable
semantic meaning by clustering related types in embedding space,
and leveraging large language models to organize them into hierar-
chical trees. The resulting ontology improves interpretability and
accelerates semantic retrieval through hierarchical navigation. Ex-
periments on three public data universes demonstrate that SEMFOR-
EST improves retrieval recall while reducing search time compared
to the existing baseline.
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1 INTRODUCTION

Understanding and organizing the semantics of relational data is
crucial for tasks such as automatic join discovery [9, 17], schema
matching [29], and large-scale data cleaning [30], and has been
widely used and explored such as in the SemTab Challenge [5]. A
semantic type [23] expresses the real-world meaning of a column
beyond its SQL data type [8]; for instance, an INT column in a
table may represent ages, tax years, or job levels. Recent work
has enriched semantic types with executable logic in the form
of Functional Semantic Types (FSTs) [16], implemented as Python
classes that provide transformation and validation methods. These
FSTs help automate data onboarding tasks that previously required
significant manual effort.

Large language models (LLMs) offer a strong foundation for this
process. Trained on diverse corpora, they can reason over schema
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Figure 1: An example semantic tree built from the Kaggle [3]
data universe. Constructing details are in § 4.

metadata, example values, and distributional signals to generate
context-sensitive type annotations [12]. Their ability to produce
executable code [7] also enables the synthesis of functional logic,
making them well-suited for generating and organizing FSTs.

Despite this promise, to our best knowledge, the only exist-
ing FST generation system, FSTO-Gen [16], lacks a semantically
structured ontology that reflects how humans organize knowledge.
FSTO-Gen relies primarily on name-based merging rather than
deeper semantic reasoning, resulting in an ontology with no mean-
ingful groupings or abstractions. For example, in Figure 1, it is desir-
able to categorize city_name and city_code under a type such as
City, and county_name and county_code under County. In FSTO-
Gen, however, all four semantic types ({ city_name, city_code,
county_name, county_code}) remain in a flat collection with no
higher-level structure. Introducing a hierarchy, as illustrated, brings
semantic organization that enhances interpretability.

To produce FSTs within a semantic-aware structure, we intro-
duce SEMFOREST, which organizes FSTs into a structured organi-
zation in the form of a semantic forest, leveraging the capabilities
of foundation models [6, 26]. Each semantic tree corresponds to a
coherent semantic domain, with a hierarchy that reflects real-world
semantics. Internal nodes represent broader semantic categories
that enhance interpretability and support downstream reasoning.
The generated ontology serves as a functional structure that sup-
ports concept abstraction and executable transformations, such as
type casting and validation.

Our main contributions are as follows:

e We propose a new ontology construction framework for FSTs
named SEMFOREST, grounded in real-world semantics (§4).

e We demonstrate that SEMFOREST improves interpretability and
retrieval effectiveness in real-world application scenarios (§5).

o We release both the prototype of SEMFOREST and two semantic-
aware applications with curated benchmarking datasets [4] to
serve as a foundation to future research for the community.
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2 PRELIMINARIES

Data Universe, Product, and Table. We consider a relational
data universe D organized hierarchically: a universe consists of
multiple products, each containing a set of tables. A product typically
represents a coherent collection curated by the same source or
community, where tables may share semantic structure.

Functional Semantic Types (FSTs). An FST is represented as a
Python class with a name, metadata (e.g., descriptions, example
values), and transformation and validation logic. FSTs are scoped
at three levels: table-level (T-FSTs), product-level (P-FSTs), and
universe-level (G-FSTs), reflecting increasing semantic generality.

FSTO-Gen. The only existing FST ontology method, FSTO-Gen [16],
does so in a bottom-up manner. It first uses an LLM to generate
T-FSTs from individual tables, based on column-level summaries.
Within each product, T-FSTs with identical class names are grouped
and merged into P-FSTs, selecting the most reliable implementation
(i.e., the one with the lowest cast () error) as representative. Across
products, same-named P-FSTs are further merged into G-FSTs via
another round of LLM synthesis, forming universe-level types. Fi-
nally, FSTO-Gen adds cross-type cast relations between G-FSTs
by embedding them and identifying semantically close neighbors,
prompting the LLM to generate transformation logic.

Note that this merging process is primarily driven by class name
matching. Once an T-FST is generated for a column, its correspond-
ing P-FST and G-FST inherit the same class name. On one hand,
this approach constructs an ontology with a representational hier-
archy from columns to T-FSTs, to P-FSTs, to G-FSTs, but it lacks
meaningful organization within levels. Consequently, the ontol-
ogy remains flat, with type relationships that do not align with
real-world semantic structures. On the other hand, we construct
our ontology directly at the G-FST level. Since T-FSTs and P-FSTs
are scoped to individual tables and products, they often contain
redundant or overlapping semantics when viewed from the uni-
verse perspective. In contrast, G-FSTs offer a more consolidated
view of type semantics at the universe scope. Moreover, building
the ontology over G-FSTs enables top-down traversal that naturally
connects to relevant P-FSTs, T-FSTs, and underlying columns.

Semantic Trees. Semantic trees have long served as a conceptual
tool for encoding structured knowledge in domains such as lexical
semantics [21], programming languages [18], and formal logic [24].
In these contexts, they are typically abstract representations used
to express hierarchical relationships among concepts or symbols.
In our setting, we materialize the concept of semantic trees as a
concrete ontology over FSTs. Each node in the tree corresponds to
a semantic type, and edges denote specialization relationships from
parent to child. However, a single semantic tree is often insufficient
to capture the diversity of semantic categories found in real-world
data. It is unnatural to force types from different domains into a
single unified hierarchy. To accommodate this heterogeneity, we
generalize the structure to a semantic forest, which consists of
multiple trees, each representing a coherent semantic domain.

3 PROBLEM AND SOLUTION OVERVIEW

Problem Statement. Given a data universe D, a set of FST class
templates 77, and a language model M, our goal is to generate a
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Figure 2: An illustration of semantic forest construction from
G-FSTs in SEMFOREST. The steps are executed in a bottom-up
manner, starting with clustering G-FSTs into groups, followed
by querying the LLM to construct semantic trees.

set of FSTs F and organize them into a structured ontology in the
form of a semantic forest. Formally, we define a process P such
that P(D, 7, M) — {F, O}, where F is the set of FSTs and O is an
ontology structured as a forest of semantic trees.

Solution Overview. We propose SEMFOREST, a system that con-
structs a semantically grounded ontology structured as a forest of
hierarchical trees. As illustrated in Figure 2, the core contribution
of SEMFOREST lies in organizing G-FSTs into a semantic forest. This
process involves two stages: (1) clustering G-FSTs into semantically
coherent groups in their embeddings space, and (2) prompting the
LLM to build a hierarchical tree structure for each cluster, then as-
sembling these trees into a forest. Each resulting tree corresponds
to a coherent semantic domain, with internal nodes capturing in-
creasingly general semantic types. Each tree’s hierarchical structure
enables top-down semantic navigation, facilitates pruning during
retrieval, and improves interpretability by explicitly representing
parent—child relationships among types.

4 SEMFOREST PROCESS

A naive approach to building semantic hierarchies would prompt a
language model to directly organize the entire set of G-FSTs into
structured trees. However, this quickly becomes impractical at scale.
Thousands of types introduce input length limitations, and their
semantic heterogeneity makes it difficult for the model to produce
coherent groupings and hierarchies in a single pass.

To address this, we first group the G-FSTs into semantically co-
herent subsets through clustering. This preprocessing step reduces
complexity by constraining the LLM’s context to a focused set of
related types, making it easier to infer meaningful generalizations.
The overall generation process is summarized in Algorithm 1.

4.1 Clustering G-FSTs into Semantic Groups

A common approach to clustering, such as k-means [19, 20] or
agglomerative clustering [22], requires specifying the number of



Algorithm 1 Semantic forest ontology generation.

Require: Set of G-FSTs SGFST LM M
1. procedure SEMANTICFORESTGEN(S®FST, M)
2 Compute embeddings for all g € S 5T to obtain matrix E

3 Set max cluster size k, epsilon schedule &

4 C < RecursivEDBSCAN(E, k, €) > Algorithm 2
5 0«0 > Initialize semantic forest ontology
6: for all cluster ¢ € C do

7 Te «— M(c) > LLM constructs tree for cluster ¢
8 O — OU{T;}

9 end for

10: return O > Return semantic forest ontology

11: end procedure

clusters in advance. However, in our setting, this is difficult to de-
termine, as semantic types vary widely in both size and granularity.
To address these limitations, we adopt a density-based clustering
method, DBSCAN [10], which avoids assumptions about cluster
count. DBSCAN groups types based on local density, allowing us to
discover clusters of varying sizes, which is essential for capturing
the heterogeneous structure of semantic categories.

DBSCAN requires a neighborhood radius parameter ¢, which
controls how close two points must be in the embedding space to
be assigned to the same cluster. However, naively using a single
fixed ¢ is problematic. A larger ¢ merges more distant types, pro-
ducing broad clusters that may overwhelm the LLM due to context
window limits and semantic interference. In contrast, a smaller ¢
yields finer-grained clusters, but the resulting trees are often too
small to be meaningful, making them trivial or uninformative. To
overcome these limitations, we adopt a recursive DBSCAN strategy
that dynamically adjusts ¢. This approach balances semantic coher-
ence and cluster size, ensuring that each subset remains tractable
for LLM-based hierarchy construction.

To enable clustering, we first embed each G-FST into a dense
semantic space (Algorithm 1, Line 2). These embeddings encode
semantic similarity, allowing types with related meanings to be
grouped based on spatial proximity. Clustering is then performed
in the embedding space using a controlled, recursive variant of
DBSCAN (Algorithm 2, Appendix B). The process begins with a
relatively large neighborhood radius € to identify coarse semantic
groupings. If any resulting cluster exceeds a predefined size thresh-
old, it is recursively refined using smaller € values. This continues
until all clusters are both size-bounded and semantically coherent.
The resulting subsets serve as focused inputs for the next stage,
where an LLM constructs semantic hierarchies within each cluster.

4.2 Semantic Tree Construction

While clustering addresses the scalability challenge, the next prob-
lem is structural: how to create meaningful hierarchies within each
subset of G-FSTs. Although types in a cluster are semantically re-
lated, they often lack explicit parent—child relationships and exist
at similar levels of abstraction. As a result, naively linking them
into a tree would create shallow or incoherent hierarchies that fail
to reflect real-world semantic organization.

To overcome this limitation, we leverage LLMs, which can pro-
pose abstractions not directly observable in the input. Specifically,
we prompt the LLM to synthesize internal nodes that represent
abstract semantic categories missing from the original type set. For
example, given types like city_name and city_code, the LLM may
introduce a higher-level node such as City, thereby establishing a
meaningful structure over the cluster.

We construct these hierarchies by providing the LLM with the
list of G-FSTs in each cluster and asking it to organize them into
a semantic tree (Algorithm 1, Lines 7). The resulting tree includes
the original G-FSTs as leaf nodes and synthesized or reused types
as internal nodes. These trees are then assembled into a semantic
forest (Line 10), which forms the structured ontology.

5 EVALUATION

We evaluate using two semantic-aware applications, namely, join-
ability detection and concatenation recovery, to demonstrate how
the semantic forest improves both retrieval accuracy and efficiency.

5.1 Evaluation Setup

Datasets. We evaluate across three datasets spanning both general-
purpose and domain-specific settings. Table 3 and Table 4 in Ap-
pendix A summarize dataset characteristics and ontology statistics
generated by SEMFOREST and FSTO-Gen.

Baseline. We compare SEMFOREST against FSTO-Gen [16].

Evaluation Tasks. We consider two semantic retrieval tasks:

1) Joinability: Given a column C, identify columns X in the data
universe such that X and C share the same semantic type (e.g., both
are Country) and contain related values, making them joinable.

2) Concatenation: Given a column C, identify two columns {X7, X5}
in the data universe from which C can be derived through concate-
nation (e.g., year_month from year and month).

Benchmark Construction. There are previous works [17] evaluat-
ing joinability tasks, but to our best knowledge, their data and tasks
are not publicly available. To enable recall-based evaluation with
explicit ground-truth, we construct our own retrieval benchmarks
and release it on GitHub [4].

We construct benchmarks without relying on manually labeled
ground-truth by generating retrieval targets through data trans-
formations. Specifically, we apply operations such as semantic-
preserving value edits to existing columns to create new ones. This
approach allows us to identify which columns serve as ground-truth
targets for evaluation. For datasets with ground-truth, one approach
is to use the semantic type alone as the retrieval signal. However,
having the same semantic type does not guarantee joinability. For
example, temperature_celsius and temperature_fahrenheit
may share the same type but are not directly joinable.

For the joinability task, we sample columns from the data uni-
verse and apply a set of nine semantic-preserving transformations,
such as value translation and reverse translation for categorical
values, or numeric normalization for numerical values, to create
variants. These variants, along with the original, are inserted back
into the universe. The goal is to retrieve all variants of a column
given the original as the query. For the concatenation task, we



Table 1: Comparison of joinability across 3 universes. We
report recall (higher is better), search time, and the number
of semantic types accessed during retrieval (lower is better).

Metric Kaggle Harvard BiodivTab
FSTO. SemForesT | FSTO. SemForesT | FSTO. SEMFOREST
Recall | 05833 0.6792 | 0.2600 0.6200 | 0.7783 0.8924
Time (ms) | 2,594.19 603.68 | 217.73 108.27 | 47830 136.95
#Types | 2529 994 | 1,662 1,227 | 705 286

Table 2: Comparison of concatenation across 3 universes. We
report recall (higher is better), search time, and the number
of semantic types accessed during retrieval (lower is better).

Metric Kaggle Harvard BiodivTab
FSTO. SemForest | FSTO. SeEMFOREST | FSTO. SEMFOREST
Recall | 03546 0.4362 | 0.1000 0.3611 | 0.5725 0.6267
Time (ms) | 1,957.41 437.14 | 14322 68.40 | 500.36 163.07
#Types | 2529 1,000 | 1,662 1,204 | 705 318

sample pairs of columns, concatenate them to form a synthetic col-
umn, and use it as a query to retrieve the original source columns.
In both settings, ground-truth targets are explicitly constructed
and inserted into the universe, enabling recall-based evaluation of
ontology-guided retrieval.

Retrieval Methods. FSTO-Gen exhaustively scans all semantic
types in the ontology. In contrast, SEMFOREST leverages its tree-
structured ontology to perform a two-stage retrieval: it first iden-
tifies the most relevant trees via root-level embeddings, and then
searches within the selected tree using its internal hierarchy. This
hierarchical strategy significantly reduces both search time and the
number of types accessed per query.

For both tasks, we first query the ontology to retrieve candidate
columns and then use an LLM to identify the correct matches. Since
the LLM-based verification step is identical across methods, our
evaluation focuses on the ontology-driven retrieval stage. For a
fair comparison, we restrict evaluation to columns for which both
SEMFOREST and FSTO-Gen successfully produce semantic types,
using their intersection as the query set.

Evaluation Metrics. We report recall over the ground-truth columns
associated with each query, as well as query runtime and the num-
ber of semantic types accessed during the retrieval process. We do
not report precision because, in the retrieved columns, there may be
additional correct matches that are not labeled, making precision
unreliable to evaluate.

Implementation Details. We implement SEMFOREST in Python
3.11, use OpenAr’s API to access the gpt-40-mini model, and Ope-
nAl’s text-embedding-3-small model to encode G-FSTs into vec-
tors. Prompts used to query the LLM are publicly available [4]. For
FSTO-Gen, we adopt the original implementation provided by the
authors [16]. All experiments are conducted on a server equipped
with dual Intel Xeon Gold 5218 CPUs and 512 GB of RAM. Reported
results are averaged over 10 independent runs.

5.2 Evaluation Results

Experiment 1: Identifying Joinable Columns. Table 1 reports
recall, query time, and the number of FSTs accessed during retrieval
across the Kaggle, Harvard, and BiodivTab universes.

SEMFOREST outperforms FSTO-Gen on all three metrics. Higher
recall shows that SEMFOREST retrieves more ground-truth columns,
demonstrating improved accuracy. It also achieves lower query time
and accesses fewer semantic types by leveraging its hierarchical
structure for efficient retrieval. Its two-stage search strategy, where
it first identifies relevant trees and then selects branches within
them, enables effective pruning of the search space.

Experiment 2: Identifying Concatenated Columns. Table 2
presents results on the concatenation benchmark. SEMFOREST again
achieves higher recall while reducing both query time and the
number of accessed semantic types. These improvements reflect its
ability to efficiently identify semantically related column pairs by
navigating the semantic forest structure.

Overall, these results highlight the benefits of the semantic forest
in supporting accurate, efficient semantic-aware column retrieval.

6 RELATED WORK

Semantic Type Annotation in Tables. Early methods [15, 25, 28]
framed column typing as a supervised classification task over fixed
taxonomies, using deep learning models or context cues. Though ef-
fective for common types, these approaches struggled with domain-
specific or rare types and required predefined label sets. LLMs have
enabled zero-shot semantic type annotation by inferring column
types from values or descriptions without task-specific training [11].
Unlike traditional classifiers, LLMs can flexibly handle custom or
fine-grained types. Recent work [12] explored prompting LLMs
for various table-related tasks, laying the groundwork for richer
ontology construction: instead of predefining a taxonomy, one can
leverage the LLM’s general knowledge to dynamically populate
ontologies with types and their relationships.

Ontology Construction and Hierarchical Semantics. Prior
work has explored automatic ontology construction from text (e.g.,
Hearst patterns [14], Probase [27]) and from web tables [13]. These
systems demonstrated that large-scale, data-driven taxonomies are
feasible, but they typically focused on general lexical or encyclo-
pedic knowledge and lacked support for functional data types or
executable logic. FSTO-Gen [16] introduced a new paradigm by
generating Functional Semantic Types that pair column semantics
with executable logic (e.g., normalization, validation). Its ontology
is constructed in a bottom-up manner and lacks the higher-order
groupings needed for interpretability and efficient retrieval.

7 CONCLUSION

Understanding functional semantics in relational data is key to
building scalable, intelligent systems. We introduced SEMFOREST,
which constructs a tree-structured ontology over FSTs by combin-
ing semantic embeddings with LLM-based abstraction. By cluster-
ing and organizing types into a semantic forest, SEMFOREST enables
interpretable, semantically aware navigation. Experiments across
diverse datasets show improved accuracy and efficiency in column
retrieval, demonstrating its potential for data integration.
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Table 3: Dataset statistics for the three data universes used
in our experiments. We report the domain, availability of
ground-truth labels, and the number of columns, tables, and
data products in each universe.

Universe Domain Ground- # Cols. # Tabs. # Data
truth Prods.

Kaggle [3] | General False 8,837 715 239
Harvard [2] ‘ General False 6,980 494 12
BiodivTab [1] ‘ Biomedical True 883 45 45

Table 4: Ontology construction statistics for FSTO-Gen and
SEMFOREST across all data universes. We report the number
of annotated columns and generated semantic types at dif-
ferent levels (T-FST, P-FST, G-FST), as well as the number of
semantic trees produced (if applicable).

A # Annot. # Sem.
Universe Ontology ‘ Cols. #T-FSTs #P-FSTs #G-FSTs Trees
Kaggle [3]  FSTO-Gen 7,861 5,285 3,775 2,622 -

&8 SEMFOREST 8,198 - 4,254 3241 1485
Harvard [z]  FSTO-Gen 6,451 3,410 2,747 2,477 -
SEMFOREST 5,372 - 3,497 3,375 1,640

iy FSTO-Gen 784 663 663 274 -
BiodivTab (1] g0 Fongst 805 - 802 300 80

Algorithm 2 Recursive DBSCAN clustering.

Require: Embedding matrix E, max cluster size k, epsilon schedule
£

1: procedure RECURSIVEDBSCAN(E, k, €)
2 if £ is empty then
3 return {indices(E)} > Return as one cluster
4 end if
5 & « first(¢)
6 Apply DBSCAN on E with parameter ¢
7 Initialize C « 0 > Cluster result set
8 for all cluster ¢ from DBSCAN do
9 if |c| > k then
10: E. « E|[c]
11 C < C U RecuUrsivEDBSCAN(E,, k, £[2 :])
12: else
13: C—CU{c}
14: end if
15: end for
16: return C

17: end procedure

A DATASET AND ONTOLOGY STATISTICS

Table 3 and Table 4 present key statistics for the three dataset uni-
verses used in our experiments, Kaggle, Harvard, and BiodivTab,
along with the corresponding ontologies constructed by FSTO-Gen
and SEMFOREST. Table 3 summarizes dataset-level characteristics, in-
cluding domain, availability of ground-truth labels, and the number

of columns, tables, and data products. Table 4 reports ontology-level
metrics, such as the number of annotated columns and the number

of generated FSTs at different levels of abstraction (T-FSTs, P-FSTs,
and G-FSTs), as well as the number of semantic trees.

B RECURSIVE DBSCAN CLUSTERING
ALGORITHM

Algorithm 2 outlines the recursive clustering procedure used to
organize semantically related G-FSTs into coherent groups. The
algorithm operates on the embedding matrix E of all G-FSTs, and
takes as input a maximum cluster size k and a schedule of € values
¢ for the DBSCAN algorithm.

The procedure begins by applying DBSCAN with the first value
in the & schedule, a list of € values ordered from large to small
(Line 5-6). If the resulting cluster exceeds the size threshold k
(Line 9), the algorithm recursively applies DBSCAN to that cluster
using the next (smaller) € in the schedule (Line 11). This process
continues until all clusters are size-bounded and semantically tight.

If the current £ schedule is exhausted, the remaining set is re-
turned as a single cluster (Line 3). Otherwise, clusters that satisfy
the size constraint are directly added to the result set (Line 14).
The recursion ensures progressively finer semantic partitions while
avoiding excessive fragmentation or loss of structure.

This controlled, recursive process enables the system to con-
struct semantically compact clusters that serve as input units for
downstream semantic tree construction.

C ALGORITHM COMPLEXITY ANALYSIS

For Algorithm 1, computing embeddings for n G-FSTs requires O(n)
calls to the embedding model and O(n-d) time and space to store the
resulting embedding matrix, where d is the embedding dimension.
The recursive clustering step (Line 4) calls Algorithm 2, which
applies DBSCAN iteratively to clusters of varying sizes. Although
each individual call to DBSCAN operates on a subset of the data, in
the worst case when clustering fails to partition the input, the total
cost can reach O(n?). In practice, recursive splitting significantly
reduces the size of each subproblem, keeping the actual runtime
much lower. Tree construction using the LLM (Line 7) is applied to
clusters of bounded size k, and therefore scales linearly with the
number of clusters.

D MORE EXPERIMENTS

Experiment 3: Effectiveness of Recursive Clustering. Table 5
compares the impact of different DBSCAN e values with our recur-
sive clustering across three data universes. We report the number
of resulting clusters (i.e., semantic trees), the maximum cluster size,
and the coverage, defined as the fraction of G-FSTs that were suc-
cessfully integrated into a final semantic tree after LLM processing.

We observe that using a fixed e introduces a trade-off between
semantic cohesion and LLM compatibility. When ¢ is small (e.g.,
0.1), clustering produces many tiny clusters (e.g., over 3,000 for both
Kaggle and Harvard), each containing only a few types. This results
in high coverage (near 100%) because LLMs can easily process
small sets, but the resulting semantic trees are overly fragmented
and semantically shallow, each tree contains, on average, fewer
than 3 types, limiting their utility as an ontology. In contrast, a
large € (e.g., 0.6) yields a few coarse clusters containing thousands
of types. These exceed the LLM’s coherence limits. As a result,



Table 5: Comparison of DBSCAN ¢ settings and our recursive clustering strategy for semantic forest construction. We report
the number of resulting clusters, maximum cluster size (number of types), and type coverage (percentage of G-FSTs included in
trees) across all three universes.

DBSCAN ¢ Kaggle Harvard BiodivTab
# clusters max cluster coverage | # clusters max cluster coverage | # clusters max cluster coverage
01 | 318 3 99.94% | 3,299 5 99.97% | 289 4 100.00%
035 | 1,193 1,165  65.26% | 1,613 866  76.00% | 101 37 97.33%
0.6 | 7 3,235 1.51% | 13 3,362 1.84% | 2 298 48.00%
Recursive | 1485 29 9836% | 1,640 29 98.37% | 80 29 96.33%

coverage drops significantly (e.g., just 1.51% for Kaggle), since the
LLM cannot consistently integrate such large sets into valid trees.

Our recursive clustering method addresses this trade-off by ap-
plying DBSCAN iteratively with a decreasing e schedule and enforc-
ing a maximum cluster size of 30. This strikes a balance: clusters are
semantically meaningful yet small enough for the LLM to process

effectively. As shown, recursive clustering yields high coverage
across all datasets (above 95%) while maintaining manageable clus-
ter sizes (e.g., max 29 types). The resulting trees are both structurally
coherent and semantically rich, leading to a more interpretable and
functionally useful ontology.
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