Optimizing Source Selection for Tuple-Value Discovery

Ahmad Fares
CNRS, Univ. Grenoble Alpes
Saint Martin D’Heéres, France
ahmad.fares@univ-grenoble-alpes.fr

Silviu Maniu
CNRS, Univ. Grenoble Alpes
Saint Martin D’Heéres, France
silviu.maniu@univ-grenoble-alpes.fr

ABSTRACT

In dataset discovery applications, users are interested in finding
tuples in source tables containing attribute values of interest. We
formulate TupLEVALDISC, a multi-objective tuple-value discovery
problem that admits a set of source tables and a user request in
the form of attribute values, and seeks to build a target table that
maximizes coverage of requested attribute values, minimizes penalty
incurred by unrequested values, and minimizes the number of sources
used to build the target table. The order in which source tables
are considered to address the user request calls for a sequential
decision-making solution. We hence formulate a Markov Decision
Process and propose a Reinforcement Learning algorithm to solve
our problem. Our experiments corroborate the need for RL to solve
the tuple-value discovery problem we introduced as a building
block for more complex dataset discovery tasks.

VLDB Workshop Reference Format:

Ahmad Fares, Georgia Troullinou, Silviu Maniu, and Sthem Amer-Yahia.
Optimizing Source Selection for Tuple-Value Discovery. VLDB 2025
Workshop: Tabular Data Analysis (TaDA).

VLDB Workshop Artifact Availability:
The source code, data, and/or other artifacts are available at https://github.
com/AhmadFares/Source-Selection-for-Tuple-Value-Discovery

1 INTRODUCTION

Dataset discovery is the process of identifying and collating datasets.
Its first purpose is to create a new, potentially virtual dataset. This
may, for example, be done directly through a search, by navigating
from related datasets, or by browsing the datasets with a specific
annotation [12, 15, 21]. A fundamental building block of dataset
discovery is tuple-value discovery where the purpose is to verify
if attribute values of interest can be retrieved from source tables.
The main challenge of tuple-value discovery is to identify source
tables containing attribute values of interest and determine the
order in which to scan those tables, without incurring too much
noise, that is, without overwhelming the user with extra data that is

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

Georgia Troullinou
CNRS, Univ. Grenoble Alpes
Saint Martin D’Heéres, France
georgia.troullinou@univ-grenoble-alpes.fr

Sihem Amer-Yahia
CNRS, Univ. Grenoble Alpes
Saint Martin D’Heéres, France
sihem.amer-yahia@univ-grenoble-alpes.fr

not of interest to them. To achieve that, we propose an optimization
problem formulation and a Reinforcement Learning (RL) solution.

Motivating example. Figure 1 shows a scenario where an in-
structor is searching for math-related questions to build a quiz.
The sources S1, S, and S3 represent tables created by different in-
structors. Each row is a question characterized by a combination of
attributes such as keyword_name, topic_name, and subtopic_name,
with values like v11, v21, representing specific math concepts cov-
ered by the question (e.g., "Mean”, "Linear Algebra”, or *Vector
Spaces”).

A User Request (UR) specifies a set of values of interest across
multiple attributes, for example:

UR = {keyword_name : {v11,v12}, topic_name : {v1}}.

That is, the user is looking to retrieve a set of questions that collec-
tively cover these requested values, such as those tagged with v11
or v12 in keyword_name, or vy1 in topic_name.

Consider the example source tables, Si, Sz, and S3, and user
requests URy, URy, and URy, in Figure 1. For instance, UR; seeks
attributes a; and ap with values {v11,v12} and {vg1,023} respec-
tively. We assume that source tables are scanned row by row. When
an attribute value in the user request is found in a table, we say
that it has been covered. In general, given a user request, not all at-
tribute values can be covered. That is for instance the case of UR in
which value vy5 for attribute ay does not appear in any source table.
However, for UR1, both S; and Sz contain requested attributes and
values. The question in this case, is to determine which of these two
source tables is better to use for UR;. Sj is better as it would only
require reading tuples 1, 2, and 3 to generate target table T; that
satisfies UR;. Source Sp would require scanning all its 4 tuples and
retrieving unrequested attribute values: vy, v22, v13, and v15. Hence,
using S is better to satisfy URj, resulting in table T;. While UR;
can be satisfied using a single source, UR; would require scanning
both S, and S3 since none of the two tables contains all requested
attributes and values. In this case, the challenge is to determine in
which order to scan these tables to incur minimal overhead, both in
terms of the number of tuples scanned and also in terms of reading
data that is of no interest to the user. In this case, scanning S3 then
Sy is preferred as it only requires reading 5 tuples (all of S3 and
then the first tuple in S;) as opposed to 8 tuples (all of Sy and then
all of Sp). This would result in target table T that best covers URy
and contains the fewest number of unrequested values.

https://github.com/AhmadFares/Source-Selection-for-Tuple-Value-Discovery
https://github.com/AhmadFares/Source-Selection-for-Tuple-Value-Discovery
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

1 : Instructor 1 $3: Instructor 3

id Keyword | Topic | Sub-Topic . . R T
id Keyword | Topic | Sub-Topic - -
1 i1 w21 vai id Keyword | Topic
1 vi1 v21 v31
2 | va2 | va2 i A v21
10 fv12 v22 v32
3 |vi2 v23 | was 3 w2 v23
1 v12 v21 v32
4 v12 v22 v41
12 | vi4 v21 | v31 T2
5 v13 v23 v44
id Keyword | Sub-Topic
URO
Topic: {v21, v25} 10 [vi2 v32
S2: Instructor 2
UR1 (single source) 12 1via V31
id | Keyword | Topic | Sub-Topic Keyword: {v11, v12}
Topic: {v21, v23}
6 [vn v20 v33 6 |vn v33
UR2 (multiple sources)
72 v22 v34 Keyword: {v12, v14}
s vi3 v21 32 Sub-Topic: {v33}
9 v15 v23 v32

Figure 1: Source tables, user requests, and target tables.

Challenges of tuple-value discovery. We assume that source
tables are not known or accessible in advance. Instead, they must
be discovered and accessed dynamically, for instance in environ-
ments where schemas and contents are unknown beforehand. While
the full contents are not available upfront, partial statistics about
sources, such as attribute distributions, may be accessible.

Our goal is to build a target table given a user request. This raises
multiple questions. The first challenge is to identify which subset
of sources contains all the requested attributes and values. We refer
to this dimension as coverage. The second challenge is to build a
target table that satisfies the user request and contains as little
unrequested data as possible for the given user request. We refer
to this dimension as penalty. The third challenge is the number
of source tables involved in satisfying a user request. Naturally,
we would like to minimize that number. Finally, as shown in our
motivating example, the order in which source tables are scanned
incurs different coverage and penalties.

Contributions. Our first contribution is to formulate TuprL-
EVALD1sc, a multi-objective tuple-value discovery problem that
admits a set of source tables and a user request, and generates a ta-
ble that best covers input attribute values and reduces redundancy,
formulated as minimizing penalty. The order in which source tables
are considered to address the user request calls for a sequential
decision-making solution. We hence formulate a Markov Decision
Process and propose an RL algorithm that adapts a Deep Q-Network
(DON) implementation to solve our problem.

Our findings, using a real-world math learning dataset, show
that using RL formulations for source selection in our problem case
helps finding the best sources compared to offline baselines needing
to traverse all sources. Moreover, we show that training of agents
transfers between different distributions of sources and that RL
agents still use much fewer sources than offline variants.

2 RELATED WORK

Dataset discovery involves locating relevant data based on specified
user requirements. This can be achieved through direct search, by
navigating linked datasets, or by browsing datasets based on specific
annotations. Since requirements can be expressed in various ways,
the approaches to dataset search tend to be diverse. Our work is
related to two main areas: dataset discovery and the application of
Reinforcement Learning (RL) for both multi-objective optimization
and cost-based query optimization.

2.1 Dataset Discovery

Dataset discovery is a very active research area that covers dataset
search, data navigation, data annotation, and schema inference [21].
Specifically, dataset search aims to retrieve datasets that, individ-
ually or in combination, fulfill a user-defined requirement. Once
a relevant dataset is identified, it is often necessary to explore re-
lated datasets that can enrich the information or provide additional
context through dataset navigation processes [19, 22, 36]. Data
annotation systems [6, 10, 18] involve linking either specific data
instances or general data descriptions to terms from a vocabulary
or concepts from an ontology, helping to clarify the meaning and
relationships within the data. In parallel, schema inference [13, 29]
supports integration by identifying structural similarities across
datasets and generating a unified schema.

In dataset search, requests may take the form of keywords, sam-
ple tables, or natural language queries, each requiring different ap-
proaches. This has led to the development of techniques that match
these varied inputs to datasets in repositories by identifying syn-
tactic or semantic similarities. The most extensively studied cases
involve keyword-based and dataset-based queries. In a keyword-
based search [2, 35], users submit a set of keywords, and the system

returns a ranked list of relevant datasets, including semantic match-
ing techniques [4, 23]. Dataset-based queries approaches, where the
search is conducted over the headers and/or content of the dataset,
take as input a dataset and return related datasets, using table union
search [17] or join-correlation search [1, 25] There are also table
augmentation techniques that, given a dataset, search for others to
enrich it with additional attributes or rows [31, 34].

Another line of work focuses on reconstructing a target table
from existing ones. Gen-T [7] addresses this table reclamation prob-
lem, where the objective is to reconstruct a user-specified target
table by composing data from multiple tables in a data lake. Table
reclamation leverages semantic table embeddings and clustering to
identify and assemble relevant tables, operating at both the schema
and content levels. We take here a different approach, one in which
the target table is not known in advance, only its schema and desired
attribute values.

The recent integration of large language models (LLMs) into
dataset discovery is motivated by the need to address some issues
in the traditional approaches [12]. LLMs have enabled the handling
of complex and ambiguous user requests, offering more semanti-
cally meaningful dataset retrieval. In [9], the authors propose an
automated annotation framework using LLMs to efficiently gen-
erate labeled datasets for dataset search tasks by combining table
compression and result aggregation techniques. The approach in
[27] introduces a pipeline that leverages LLMs to generate synthetic
query-description pairs for fine-tuning dense retrieval models in
dataset search. Solo [30] is a self-supervised table discovery system
that automatically constructs training datasets from table reposito-
ries to train models that retrieve tables containing the answers to
natural language questions. The authors in [3] use GPT-3.5 Turbo
to decompose natural language queries into sub-queries, which
may correspond to different tables and columns, enabling retrieval
and joining of multiple tables when the join plan is not explicit
in the original query. This line of work has also extended to the
use of small language models (SLMs), which offer lightweight and
effective alternatives for retrieval tasks. ELEET [15] is a dataset
discovery system designed to retrieve relevant tables from a large
corpus based on a user request, leveraging a fine-tuned SLM for effi-
cient similarity-based matching. Recent table union search methods
[8, 11] utilize pre-trained language models to better capture and
represent column semantics. Joinable table search finds tables that
can be joined with a query table to enrich it with more attributes.
Specifically, the authors of [5] propose a deep learning framework
that tackles the challenge of joining semantically related columns
by fine-tuning to learn value transformation rules that enable effec-
tive alignment for joins. [16] proposes an LLM-based framework
for causal dataset discovery, aiming to identify columns with poten-
tial causal relationships across correlated tables. The work in [20]
proposes a data-driven method for discovering semantic domains
by identifying sets of terms across a collection of tables through the
analysis of value co-occurrence information across dataset columns.

Our work aligns with the notion of “data on demand” in dataset
discovery, retrieving only the data needed by the user at query time.
We introduce the atomic notion of "tuple-value discovery" and unlike
existing work, our approach models user request satisfiability by
adding notions of coverage and penalty, aiming to retrieve only the

data that best satisfies the user request while minimizing redundant
information.

2.2 RL for optimization

Model-free Reinforcement Learning (RL) [28] is a popular approach
for solving sequential optimization problems whereas an agent
acts on its environment and receives a reward for each action it
takes, transitions in different states, and optimizes the cumulative
reward. In our work, we aim to optimize the satisfaction of a user
request by covering as many requested values as possible with the
least redundant data and with the fewest number of source tables.
These goals are not correlated which results in a multi-objective
optimization problem.

Multi-Objective Reinforcement Learning [32] provides a prin-
cipled framework for learning policies that provide a trade-off be-
tween multiple objectives. In [32], the authors apply scalarization
to transform multiple objectives into a single scalar value via a
weighted combination of the objectives. We adopt the same ap-
proach in our case. In [14], the authors explore the use of Deep
RL to solve a multi-objective problem. The optimal solutions are
obtained through forward propagation of the trained network. The
network model is trained through the trial and error process of
DRL and is used as a black-box heuristic or a meta-algorithm with
strong learned heuristics. The use of DRL to optimize our objectives
is left for future work.

Another related line of work related to ours is the use of RL
for query optimization. For instance, HybridQO [33] is a hybrid
optimizer that combines both cost models and learning techniques
to improve join order in SQL. Our work applies a similar decision-
making process where the order in which source tables are chosen
bears similarity to join ordering. The applicability of this multi-
objective framework in our case could be explored in the future.

3 PROBLEM AND SOLUTION

We are given a set of input source tables S consisting of attributes
in a set A, and a user request UR in the form {(a, {v})} containing
a set of pairs depicting the desired values {v} for attribute a € A,
where a is present in all sources S € S. Unlike a SQL selection query,
a user request is not a filter over tuples. It specifies values to be
collectively covered across multiple rows, not necessarily matched
within a single tuple. Figure 1 shows an example of 3 source tables
and 3 user requests.

3.1 Definitions
We define the notions of coverage and penalty, in relation to a given
user request UR and a target table T.

We denote by values(a, T) the set of unique values that appear
in attribute a of table T.

Definition 3.1. Per-Attribute Coverage (AttrCov). The fraction
of values in the user request UR that is contained in T for a specific
attribute a:

|values(a, T) N values(a, UR)|
|values(a, UR)|

AttrCov(UR, T, a) = (1)

Definition 3.2. Table Coverage is computed as the average
across per-attribute coverage in T:
1

Coverage(URT) = W

Z AttrCov(UR, T, a) (2)
acA

To capture irrelevant data, we have to define the notion of penalty
on the attribute values that do not appear in the user request UR
but are contained in T.

Definition 3.3. Per-Attribute Penalty (AttrPen). The fraction
of retrieved values in T for attribute a that were not part of the user
request UR:
|values(a, T) — values(a, UR)|

[values(a, T)|

AttrPen(UR, T, a) = 3)
Definition 3.4. Table Penalty is computed as the average per-
attribute penalty across all attributes:

Penalty(UR T) = Z AttrPen(UR, T, a) 4)

1

Al acA

Our coverage measure corresponds to precision, while penalty
is inversely related to recall, but evaluated at the value level instead
of tuple level, in accordance with our UR semantics.

Other aggregations could be explored in the future. For instance,
minimizing variance across attribute penalties could be used to
define table penalty.

3.2 Problem Statement

We are now ready to formulate our problem that aims to optimize
the three dimensions of our setting (coverage, penalty, and number
of source tables):

ProBLEM 1 (TUPLEVALDIsC). Given a setS of source tables{Sy, .. .,
Sm} and a user request UR, the objective is to retrieve tuples to build
a table T whose schema is defined by all the attributes in UR, de-
noted as proj, (A), by adding only tuples from S = U;S;, such that
Coverage(UR, T) is maximized, and Penalty(UR, T) and the number
of sources used |S| is minimized.

3.3 Markov Decision Process Formulation

Our goal is to rely RL approach to solve TupLEVALDIscC, where the
agent acts on its environment and completes the smallest table T
that addresses the user request UR by maximizing the cumulative
reward. There are four main elements of an RL process: a policy,
a reward signal, a value function, and, optionally, a model of the
environment.

A policy is a mapping from perceived states (i.e., sources) of the
environment to actions to be taken in those states. In some cases, the
policy may be a simple function or lookup table, whereas in others it
may involve a search process as is the case in solving TUPLEVALDISC.
As the reward function defines the goal of an RL problem, the sole
objective is to maximize the total reward it receives and the reward
signal is the primary basis for altering the policy. While the reward
signal conveys immediate goodness, a value function indicates long-
term desirability. In our case, the agent maximizes the total reward
when it starts from a random source table and gets closer, at each
step, to the user request UR. The last element of RL is a model of
the environment, enabling the system to predict its behavior. For

instance, when presented with a state and an action, the model
can anticipate the subsequent state and the associated reward. In
contrast, in our work, our focus is on model-free approaches that
explicitly rely on trial-and-error methods.

We model this using a Deterministic Discrete Markov Decision
Process (MDP) defined by a triple {S, A, R} composed of: the state
space S of the environment; the action space A from which the
agent selects an action at each step; and a reward function R that
computes the reward of an action act; from state st; to stg, R; =
r(st;, act;, st;). In this context, the defintions of policy and optimal
policy are as follows:

Definition 3.5. Policy 7. A policy w: S X A — [0,1] of an RL
agent maps the probability of taking action act € A in state st € S,
that is, 7(st, act) = Pr(act; = act|st; = st).

Definition 3.6. Optimal policy 7*. A policy 7* is optimal iff its
expected cumulative reward is greater than or equal to the expected
cumulative reward of all other policies 7. The optimal policy has
an associated optimal state-value function, as well as an optimal
action-value function, or optimal Q-function, as defined below:

QO (st, act) « max,;Q(st,act)

In other words, Q* gives the largest expected return achievable by
any policy for each possible state-action pair.

We now detail the MDP ingredients for our setting.

States and actions. We define the environment of our source
exploration agent as containing the set of source tables S and al-
gorithms (presented below) that select tuples from a given set of
sources S . The (discrete) action space is of size |S|, where each
action corresponds to a source S; in the set of all available sources.

When an action is chosen, the corresponding source S; is added
to the candidate source set S the environment applies the tuple
selection algorithm, Complete_from_Source algorithm, listed in
Algorithm 1, to extract useful tuples from the source selected at step
i, S;. The selected rows are merged into T'(i), via the Optimize_Se-
lection algorithm (as described below). The state at each step
consists of the current bitmap of chosen source set S, source-level
statistics, and the partially constructed table T'(i).

The Complete_from_Source algorithm is composed of three
steps. The first step, Coverage_Guided_Tuple_Selection, is pro-
vided in Algorithm 2. It optimizes coverage by adding into T the tu-
ples that ideally cover the entirety of the attribute values in the user
request UR; if this is not possible, the algorithm stops when a cover-
age threshold 0 is reached. Once the coverage optimization has been
performed, the next step is refining T via Penalty_Optimization
in Algorithm 3. This is performed by replacing a tuple in T with a
tuple in S only if the incurred penalty is improved, i.e., reduced. The
final step removes redundant tuples in T via Optimize_Selection
depicted in Algorithm 4. This algorithm iteratively attempts to re-
move tuples from T and tests whether the coverage does not change;
if this is the case, the tuple is removed (note that the penalty cannot
increase in this case). The penalty optimization algorithm is run
separately for two main reasons. The first is that, even if it could
have been included in Algorithms 2 and 3, running it separately
ensures that the optimization is only done once for each source.

Secondly, the algorithm is used as a final optimization step when
results are joined to previous step in the RL sequence.

The computational complexities of the algorithms are: O(S)
for Complete_from_Source, O(TS) for Penalty_Optimization,
and O(T?) for Optimize_Selection. Considering that T is usually
small (it can contain at most |UR| tuples), our algorithms are very
efficient in practice.

Algorithm 1: Complete_from_Source

Input: Source Table S, User Request UR, Desired Coverage
Threshold 6
Output: Completed Table T
1 T—0,i—0;
2 (T,i) « Coverage_Guided_Tuple_Selection(S, UR, 0) ;
3 T « Penalty_Optimization(S, T, UR, i, 0);
4 T <« Optimize_Selection (T, UR);
5 return T ;

Algorithm 2: Coverage_Guided_Tuple_Selection

Input: Source Table S, User Request UR, Coverage
Threshold 6
Output: Partial Table T, Index i
1 T« 0, curr_coverage <« 0, curr_penalty —0;
2 fori < 1to|S|do
3 Teurr < T U {ti};
4 if Coverage(UR, Teyrr) < 6 and
Coverage(UR, Teyrr) > curr_coverage then

5 T « Teurr

6 curr_coverage « Coverage(UR, T) ;
7 curr_penalty « Penalty(UR, T) ;

8 if curr_coverage > 6 then

9 L break ;

10 return (T,i) ;

When an agent visits a state st, it tries to navigate into a better
state st’ by applying an action that selects one source from the
available set S. At each step t, once Complete_from_Source is run,
the new state is then the set of the chosen sources S = Uje1,.. +Si
plus the target table T containing the chosen tuples. No source S;
should be selected twice in our case as this would not change the
state, both in terms of S and T. Hence, our setting can be considered
as one containing non-repeating actions.

Reward design. As TuPLEVALDIsc is a multi-objective problem,
in the general case our reward will be a function of the coverage,
penalty, and the number of selected sources:

R(UR,T,S) = f (Coverage(UR, T); Penalty (UR, T);S) .

Similarly to [32], we propose to define our reward using scalariza-
tion. We hence write our reward as a weighted linear combination
of three objectives:

R(UR,T,S) = a-Coverage(UR, T)—f-Penalty(UR, T)—(1—-a—p) ﬂ

IsI’

Algorithm 3: Penalty_Optimization
Input: Source Table S, Current Table T, User Request UR,
Reached Index i, Coverage Threshold
Output: Updated Table T
1 curr_penalty « Penalty(UR,T) ;

2 if curr_penalty = 0 then
3 L return T ;

4 forito |S| do

// Stop if penalty is zero

5 foreach rowt; € T do
6 Tcurr(_(T_{tj})U{ti}§
7 if Coverage(UR, Teyrr) > 6 and
curr_penalty > Penalty(UR, Tcyyy) then
8 T & Teurr
9 curr_penalty < Penalty(UR T) ;
10 if curr_penalty = 0 then
1 L returnT; // Stop if penalty is zero

12 return T ;

Algorithm 4: Optimize_Selection
Input: Table T, User Request Table UR
Output: Optimized Table T

1 orig_coverage < Coverage(UR T) ;

2 changed < True;
3 while changed do

4 changed « False;

5 foreach rowt; € T do

6 Toub — T —{1;};

7 if Coverage(UR, T,;) = orig_coverage then

8 T «— Tsup s

9 changed « True ;

10 break ; // Restart loop after
modification

11 return T ;

where a, § € [0, 1] control the relative importance of each compo-
nent, with 0 < o+ < 1, and % represents the normalized steps in
the episode. This formulation encourages the agent to find source
tables that satisfy a UR with high coverage and low penalty, while
also being efficient in the number of sources used.

To this reward signal, we add some optimizations. First, we add
a STOP action to the action space, representing the decision of
the agent to stop the episode when the reward is optimized. The
reason for this choice was that we initially considered terminat-
ing an episode automatically once a threshold on coverage and/or
penalty were reached. However, this approach would have imposed
rigid limits on exploration and may have prevented the agent from
discovering better coverage/penalty trade-offs. Note that the for-
mulation of the reward encourages the agent to stop only when
coverage is sufficiently high, and penalizes early stopping. We pe-
nalize with a low reward the cases when the first chosen action is

STOP and when the agent tries to select a source several times in
the episode; we also stop early when coverage is 1 and penalty is 0,
representing the ideal case.

3.4 Revisited Problem Formulation

We now reformulate Problem 1 (TupLEVALDIsc) for our RL setting:

ProBLEM 2 (RLTUPLEVALDIsC). Given a set of source tables S and
the task of incrementally building a target table T according to a user
request UR, the objective is to find an optimal policy that maximizes
its cumulative reward as follows:

" = argmax,R(UR T, S).

Problem 2 refines Problem 1 to address settings where scanning
all sources sequentially is impractical, and a dynamic selection
process based on table statistics can be trained to reduce cost and
improve efliciency.

3.5 Deep Q-Network Solution (DQN)

We use Deep Q-Network [28], a popular RL algorithm that extends
Q-learning using deep neural networks to approximate the Q-value
function. It aims to find an optimal policy for action selection in
an MDP by estimating the expected cumulative reward for each
(state, action) pair. Through an iterative process that balances ex-
ploration and exploitation, it updates Q-values based on observed
rewards and future value estimates, enabling the agent to make
increasingly informed decisions and maximize long-term rewards:

QO(st,act) « Q(stact) +A [R+y max_ QO(st’,act’) — Q(st, act) |,
act’€

where A € [0, 1] is the learning rate, which determines how many
new experiences adjust old estimates, and y € [0, 1] is the dis-
count factor, controlling the importance of future rewards. We used
the solution described in [26], PER (Prioritized Experience Replay
Buffer), to define our replay buffer, which defines an effective way
to acquire diverse experience during training.

4 EXPERIMENTS

The purpose of our experiments is to examine RL solution’s effec-
tiveness compared to three offline variants using the algorithms
from Section 3.3 that iterate through the sources in random order.

4.1 Experimental Setup

Setup. The inference experiments were conducted on a Dell
Precision 3561 running Debian, equipped with an 11th Gen Intel
Core i7-11850H CPU, 31 GB of memory, and a 1 TB NVMe SSD. Code
and data are available at: https://github.com/AhmadFares/Source-
Selection-for-Tuple-Value-Discovery

Dataset. We use the MathE ! dataset, a real-world dataset, avail-
able on an e-learning platform, that focuses on enhancing math-
ematical skills in higher education and supporting autonomous
learning through 1,900 human-authored multiple-choice questions.
The dataset contains 15 topics from which we selected 10 topics,
e.g., Linear Algebra, Probabilities. The difficulty level of each MCQ
has a numerical scale within [1,6], 1 being the easiest. The dataset

!https://mathe.ipb.pt/

contains 20, 255 tuples reflecting student, question interactions,
and 31 attributes. Notable attributes in this dataset for targeted
knowledge search include keyword-name, topic-name, and subtopic-
name, which enable users to request information related to students’
performance on various mathematical concepts. However, highly
specific and focused data may be valuable, especially when the
request is described using as many attributes as possible.

To simulate realistic scenarios where users seek data with vary-
ing levels of detail or specificity, we consider two URs:

e Deep UR: a user request that contains a few attributes,
each with multiple requested values.

o Shallow UR: a user request that involves a larger number
of attributes, each with only a few associated values.

These URs enable us to compare how our methods perform under
both focused and vague information needs.

Source Generation. To simulate diverse real-world data con-
ditions and introduce more challenging sources for our approach,
we generate synthetic source tables from our dataset using the
following strategies:

e Noise Injection. We randomly remove 30% of the values
requested in a UR from the original dataset/table and replace
them with unrequested values as noise. Afterwards, the
resulting table is split into distinct, equally sized sources by
distributing its rows based on randomly chosen allocations.
As a result, the sources are intentionally designed to make
full coverage of the user request unachievable. We refer to
the agent trained with this strategy as RLNOISEINJECTION.

o Targeted Noise Injection. For rows in which all attribute
values satisfy the input user request UR, one value is ran-
domly replaced with an unrequested value. The resulting
corrupted table is then divided into distinct, equally sized
sources according to randomly assigned splits. The agent
trained using this strategy is called RLTGTNOISEINJECTION.

e UR Values Injection. First, we construct an optimal table
based on the input user request (UR) by taking the Carte-
sian product of all values in UR, producing rows in which
every value satisfies UR. This results in a table with zero
penalty. The rows in this table are randomly injected into
the initial source table. The resulting table is then divided
into distinct sources of equal size by randomly selecting
portions of rows. We denote the agent trained with this
strategy RLVALUEINJECTION.

For the MathE dataset and for each of the above strategies, we split
the tuples in the original table into 10 sources of comparable size.
Handling source tables of different sizes is left to future work.

Measures. For training, we measure the evolution of rewards,
number of steps per episode, and the choice of the STOP action. For
inference, we report the order in which the sources are selected,
we measure coverage and penalty of the target table, number of
sources selected, as well as running time.

We also report the result of transfer learning from one set of
sources to another, namely, we examine if an agent trained for a
set of sources, performs well on using another set of sources for
the same request.

https://github.com/AhmadFares/Source-Selection-for-Tuple-Value-Discovery
https://github.com/AhmadFares/Source-Selection-for-Tuple-Value-Discovery

4.2 Offline Variants

To assess the effectiveness of our RL solution, we define three offline
variants using the algorithms in Section 3.3 that loop through the
sources in S in an arbitrary order:

e One-Pass Coverage Variant (No Optimization). This
variant stops selecting rows as soon as the coverage thresh-
old 0 is reached. It does not perform any additional optimiza-
tions. This corresponds to the Coverage_Guided_Tuple_-
Selection algorithm and is denoted as OFFLINECOVERAGE.

e Penalty Optimization. After achieving coverage 6, this
variant attempts to replace existing rows in the selected sub-
set with better candidates to minimize the penalty while
maintaining the required coverage. This corresponds to
Coverage_Guided_Tuple_Selection followed by the Pen-
alty_Optimization algorithm, and is denoted as OFFLINE-
PENALTYOPT.

e Overall Selection Refinement. In addition to penalty
optimization, this variant includes an optimization step that
further refines the target table by removing rows that do not
contribute to coverage. This ensures a minimal and efficient
selection, and corresponds to the entire Complete_from-
_Source algorithm. It is denoted as OFFLINEALL.

These offline variants serve as comparison to the RL agents which
execute at each step Complete_from_Source algorithm only on
the sources chosen up to that point.

4.3 Results

We set in our experiments & = 0.6, f = 0.3; this is to have larger
focus on coverage and penalty while accounting for the number
of sources selected (set to 0.1). The values for each dimension are
normalized to a value of 10. As described in Section 3.3, several
penalties were introduced. A penalty of —10 is applied both when
the agent selects the same source more than once (which also
terminates the episode) and when it chooses STOP as its first action.
Additionally, if the agent chooses STOP with full coverage of 1 and
penalty of 0, it receives a large reward of 50 to indicate that it should
not continue the optimization; however, such a scenario is rare in
practice. We trained each agent for 7,000 timesteps using the Stable-
Baselines3 DQN implementation, with the default learning rate
(1x10~%) and an exploration schedule that starts with fully random
actions at the beginning of training, gradually shifting towards
mostly greedy (best-known) actions as training progresses. The
exploration rate is decreased over 40% of the training, encouraging
the agent to explore initially and then exploit what it has learned.

Training. For training on the MathE dataset, we use a Deep UR
with three attributes, each requesting four distinct values, and a
Shallow UR consisting of 7 attributes, each having one or two values.
The details of the URs are found in Appendix A. For each UR, we
trained three agents each corresponding to the source generation
strategies outlined in Section 4.1.

Our experiments show that RL agents trained on different source
generation strategies learn to avoid repeated sources and to balance
the trade-off between coverage, penalty, and the number of steps.
However, the agent RLVALUEINJECTION trained on the Deep UR has
difficulties learning optimal stopping. To address this, we propose

a modified environment that removes the termination penalty for
repeated source selection and instead ignores repeated sources in
the reward, thus encouraging the agent to focus on maximizing
reward without the added complexity of learning when to stop.
Furthermore, we find that including the objective of source min-
imization in the reward is essential for efficient source selection
policies. These findings guide our detailed analysis which follows.

Reward per Episode (Smoothed) for All Variants

—— RLValuelnjection
—— RLTgtNoiselnjection
—— RLNoiselnjection

Reward
w

0 500 1000 1500 2000 2500 3000 3500
Episode

(a) Deep UR

Reward per Episode (Smoothed) for All Variants

— —— RLValuelnjection
% | My RLTgtNoiselnjection
| — RLNoiselnjection

40

30

Reward

0 500 1000 1500 2000 2500 3000 3500 4000
Episode

(b) Shallow UR
Figure 2: Reward evolution when training RL agents.

Figure 2a shows the evolution of the reward of agents trained on
the Deep UR over the course of training episodes. As clearly seen
in the figures, both RLTcTNo1sEINJECTION and RLNOISEINJECTION
maximize their reward after 1,300 episodes and converge on a re-
ward ranging between 0 and 5, suggesting that agents learned to (i)
avoid repeated sources and (ii) stop after a coverage-penalty trade-
off is achieved. However, RLVALUEINJECTION starts by alternating
between high and low rewards, then converges to a low reward,
indicating that the agent kept selecting sources repeatedly, leading
to a low reward, and never learned how to stop.

Figure 2b shows the reward evolution for agents trained on the
Shallow UR. The agent RLTGTNOISEINJECTION achieves results simi-
lar to its counterpart trained on Deep UR, whereas other agents had
different behavior. In particular, RLTGTNOISEINJECTION discovers
that a coverage of 1 is achievable, which it successfully exploits be-
tween episodes 2300 and 3300. The drop in the end results from the
agent attempting to further minimize the number of steps, which
reached 0 as visible in Figure 3b, triggering a penalized reward.
Furthermore, the difficulty in learning when to stop, previously

observed in the Deep UR setting, also affects RLVALUEINJECTION as
shown in 4b.

Steps Taken per Episode (Smoothed) for All Variants

—— RLValuelnjection
—— RLTgtNoiselnjection
—— RLNoiselnjection

0 500 1000 1500 2000 2500 3000 3500
Episode
(a) Deep UR

Steps Taken per Episode (Smoothed) for All Variants

—— RLValuelnjection
—— RLTgtNoiselnjection
—— RLNoiselnjection

0 500 1000 1500 2000 2500 3000 3500 4000
Episode
(b) Shallow UR

Figure 3: Steps per episode for each RL agent.

Figures 3a and 3b track the number of steps per episode. RLT-
GTNoOISEINJECTION and RLNOISEINJECTION in both experiments
learned that higher reward can be achieved in episodes having
fewer steps. On the other hand, the graph of RLVALUEINJECTION
trained on Deep UR shows more exploratory steps in later episodes,
whereas in the Shallow UR setting, it behaves similarly to the other
agents. These results are consistent with the results in Figure 4a
and 4b, where we track the use of the STOP action in each episode.
It can be seen that all agents consistently learned to use the STOP
action, except RLVALUEINJECTION in the Deep UR case.

In order to address the limitation that the RLVALUEINJECTION
agent fails to learn when to stop, we modified the environment
so that selecting the same source twice no longer terminates the
episode, and gives a reward of 0 (previously —10). This encourages
the agent to focus on maximizing reward without the overhead of
learning how to stop. This change requires increasing the number
of episodes to 30,000 to accommodate potentially much longer
episodes; whereas previously, the maximum steps per episode was
the number of sources plus one. Now, episodes terminate only when
the agent chooses STOP.

In Figure 5 (top) the results show an improvement in the behavior
of the RLVALUEINJECTION agent, which converged to receiving the
highest reward after approximately 5,500 episodes. The behavior of

STOP Action Used per Episode (Smoothed) for All Variants

—— RLValuelnjection
—— RLTgtNoiselnjection
— RLNoiselnjection

STOP Action Used (Fraction per window)

0.0

0 500 1000 1500 2000 2500 3000 3500
Episode
(a) Deep UR

STOP Action Used per Episode (Smoothed) for All Variants

10— RLValuelnjection
—— RLTgtNoiselnjection
—— RLNoiselnjection

STOP Action Used (Fraction per window)

0.0 Pt e o
0 500 1000 1500 2000 2500 3000 3500 4000
Episode
(b) Shallow UR

Figure 4: Number of STOP actions per episode for RL agents.

the two other agents is similar to that observed in the initial exper-
iment. However, the decrease in reward may be due to increased
exploration, leading to episodes with a large number of steps. More-
over, the difference in the number of episodes between the agents
suggests that the RLVALUEINJECTION agent tends to perform shorter
episodes compared to the other two agents, as confirmed by the
steps count in Figure 5 (bottom).

Moreover, we conducted an experiment where the weight asso-
ciated with the normalized steps, specifically % was set to zero by
choosing a + f = 1. This effectively eliminates any penalty related
to the number of steps used per episode. All other parameters and
experimental conditions were kept the same as in the initial setup.
The results, shown in Figure 6, show that in this case the number
of steps per episode does not decrease over time. This suggests that
the absence of even a small weight on normalized step usage nega-
tively impacts the agent’s ability to learn efficient choice of sources.
The results highlight the significance of including this weight to
encourage shorter, more efficient source choice trajectories.

Inference. Once the training has been performed for each UR,
we evaluate the resulting agents by using the trained policies on
sources re-split using the three strategies detailed in Section 4.1.
Hence, each agent is tested on all strategies but having different
sources than the ones used for its training.

The results are summarized in Table 1. All RL agents consistently
outperform offline methods in terms of runtime, except for instance

Table 1: Evaluation of offline baselines to online RL agents

OFFLINE OFFLINE OFFLINE RL RL RL
Test UR + Source Split Noise VALUE TGTNOISE
COVERAGE PENALTYOPT ALL
INJECTION INJECTION INJECTION
Coverage= 0.67 Coverage= 0.67 Coverage= 0.67 Coverage= 0.67 Coverage= 0.67 Coverage= 0.67
Deep UR + Penalty = 0.59 Penalty = 0.59 Penalty = 0.59 Penalty = 0.59 Penalty = 0.59 Penalty = 0.59
Noise Injection Time = 0.147 Time = 0.143 Time = 0.144 Time = 0.045 Time = 0.087 Time = 0.019
Steps = 10 Steps = 10 Steps = 10 Steps =1 Steps =3 Steps =1
Coverage=1 Coverage=1 Coverage=1 Coverage=1 Coverage=1 Coverage=1
Deep UR + Penalty= 0.494 Penalty= 0 Penalty= 0 Penalty= 0.320 Penalty= 0.066 Penalty= 0.320
UR values Injection Time = 0.011 Time = 109.77 Time = 110.83 Time = 5.7 Time = 14.75 Time = 5.73
Steps=1 Steps=10 Steps=10 Steps=1 Steps=3 Steps=10

Coverage=0.91

Coverage=0.91

Coverage=0.91

Coverage=0.91

Coverage=0.91

Coverage=0.91

Deep UR + Penalty= 0.565 Penalty= 0.565 Penalty= 0.565 Penalty= 0.565 Penalty= 0.565 Penalty=0.565
Targeted Noise Injection| Time = 0.188 Time = 0.186 Time = 0.186 Time =0.051 Time = 0.147 Time = 0.03
Steps=10 Steps=10 Steps=10 Steps=1 Steps=3 Steps=1
Coverage= 0.071 | Coverage= 0.071 | Coverage= 0.071 | Coverage= 0.071 | Coverage= 0.071 | Coverage= 0.
Shallow UR + Penalty = 0.857 Penalty = 0.857 Penalty = 0.857 Penalty = 0.857 Penalty = 0.857 Penalty = 0
Noise Injection Time = 0.169 Time = 0.157 Time = 0.156 Time = 0.077 Time = 0.024 Time = 0
Steps = 10 Steps = 10 Steps = 10 Steps = 2 Steps = 1 Steps = 0
Coverage=1 Coverage=1 Coverage=1 Coverage=1 Coverage=0.85 Coverage=0
Shallow UR + Penalty= 0.357 Penalty= 0.428 Penalty= 0.428 Penalty= 0.795 Penalty= 0.795 Penalty= 0.0
UR values Injection Time = 0.053 Time = 614.83 Time = 522.78 Time = 10.98 Time = 0.04 Time = 0.002
Steps=2 Steps=10 Steps=10 Steps=2 Steps=1 Steps=0
Coverage=1 Coverage=1 Coverage=1 Coverage=1 Coverage=1 Coverage=0
Shallow UR + Penalty= 0.814 Penalty= 0.799 Penalty= 0.799 Penalty= 0.811 Penalty= 0.799 Penalty=0
Targeted Noise Injection| Time = 0.114 Time = 486.99 Time = 959.12 Time = 32.24 Time = 21.89 Time = 0.005
Steps=10 Steps=10 Steps=10 Steps=2 Steps=1 Steps=0

where OFFLINECOVERAGE variant on the UR Values Injection strategy
sources, where coverage is achieved already using the first source
but results in a higher penalty.

Generally, trained RL agents have a consistent and accurate
choice of sources, achieving the maximum coverage possible in all
cases (with OFFLINEALL serving as our reference for optimality). In
terms of penalty, agents demonstrate robust minimization, particu-
larly when evaluated on source splits using the same strategy as
the one on which they are trained. For instance, RLVALUEINJECTION
achieves near-optimal results with the UR Value Injection source
strategy. This occurs even though its training was less stable than
other variants. An issue occurs on the Shallow UR when training
with RLTGTSOURCEINJECTION: as the agent has learned to use 0
sources, no source is selected and hence the results are 0 on all
dimensions (coverage, penalty, sources). One way to mitigate this
would be to use fewer episodes; indeed, the results seem to indicate
that around 3000 episodes are enough for all agents for this type of
UR. Finding the optimal number of episodes will be investigated in
future work.

Additionally, we note that offline approaches tend to require
more steps (i.e., sources selected) and longer evaluation time, as
they lack a learned stopping mechanism and often require going
through all of the available sources. RL agents, in contrast, often
know when to terminate directly after finding a reasonable solution,
reflecting effective policy learning.

This confirms the appropriateness of RL solution to solve the
newly introduced TuPLEVALDIsC problem.

5 CONCLUSION AND FUTURE WORK

We formalized TupLEVALDIsc, a novel dataset discovery problem
that aims to build a target table from source tables. We propose a
sequential decision making solution to solve TuPLEVALD1sc and we
empirically explore different settings of source tables that validate
our multi-objective formalization and opens several new directions.

Our immediate action is to examine other transfer learning set-
tings. In our experiments, we reported the result of transferring
from one set of source tables to another and saw that they are
promising. We plan to study transfer across user requests and across
datasets. Indeed, training an agent for a given request or on a given
dataset could benefit other settings and prevent another training.

Our next action is to account for statistics of input tables. In our
setup, we considered only equi-size source tables allowing us to
focus on the number and order of those tables. Considering statistics
such as table sizes and attribute selectivity in the definition of states
and reward, would enrich the training of our agents.

Another direction is to define a ground truth for tuple-value
discovery. While we use the offline method as a reference, we do
not guarantee its optimality.

Following recent work [24], our next endeavor is to consider a
language model as a data source. In our current setup, the agent
selects from a fixed set of known sources that are locally available.
A proposed future direction is to expand the agent’s capabilities by
introducing a new action: Construct_Prompt. When this action
is selected, a prompt is dynamically generated based on the user
request and previously selected sources, and sent to a pretrained
language model. The goal is to retrieve external, potentially relevant

50

40

30

20

Reward

100

80

Reward per Episode (Smoothed) for All Variants

A a0 R T

RLValuelnjection
RLTgtNoiselnjection
RLNoiselnjection

0 2000

4000

6000
Episode

8000 10000

Steps Taken per Episode (Smoothed) for All Variants

RLValuelnjection
RLTgtNoiselnjection
RLNoiselnjection

0 2000 4000 6000

Episode

8000 10000

Figure 5: Training evolution with Ignore_Source_Repetition
variant: reward (top) and steps (bottom).

Steps Taken per Episode (Smoothed) for All Variants

1500

—— RLValuelnjection
RLTgtNoiselnjection
—— RLNoiselnjection

0 500

1000

2000
Episode

2500 3000 3500 4000

Figure 6: Steps per episode for each RL agent with No-Step-
Weight

tabular data from online sources that can contribute to improving
coverage. This would require to revisit our reward to include the
cost of using a language model as a data source.

ACKNOWLEDGMENTS

This work was supported by DataGEMS, funded by the European
Union’s Horizon Europe Research and Innovation programme, un-
der grant agreement No 101188416.

REFERENCES

(1]

[2]

[3

(10]

(1]

[12]

=
&

[14]

[15]

=
&

(17

(18]

[19

[20]

[22

Alex Bogatu, Alvaro AA Fernandes, Norman W Paton, and Nikolaos Konstanti-
nou. 2020. Dataset discovery in data lakes. In 2020 ieee 36th international confer-
ence on data engineering (icde). IEEE, 709-720.

Michael] Cafarella, Alon Halevy, and Nodira Khoussainova. 2009. Data inte-
gration for the relational web. Proceedings of the VLDB Endowment 2, 1 (2009),
1090-1101.

Peter Baile Chen, Yi Zhang, and Dan Roth. 2024. Is table retrieval a solved prob-
lem? exploring join-aware multi-table retrieval. arXiv preprint arXiv:2404.09889
(2024).

Zhiyu Chen, Mohamed Trabelsi, Jeff Heflin, Yinan Xu, and Brian D Davison.
2020. Table search using a deep contextualized language model. In Proceedings
of the 43rd international ACM SIGIR conference on research and development in
information retrieval. 589-598.

Arash Dargahi Nobari and Davood Rafiei. 2024. Dtt: An example-driven tabular
transformer for joinability by leveraging large language models. Proceedings of
the ACM on Management of Data 2, 1 (2024), 1-24.

Vasilis Efthymiou, Oktie Hassanzadeh, Mariano Rodriguez-Muro, and Vassilis
Christophides. 2017. Matching web tables with knowledge base entities: from
entity lookups to entity embeddings. In The Semantic Web-ISWC 2017: 16th
International Semantic Web Conference, Vienna, Austria, October 21-25, 2017,
Proceedings, Part I 16. Springer, 260-277.

Grace Fan, Roee Shraga, and Renée J. Miller. 2024. Gen-T: Table Reclamation in
Data Lakes. arXiv:2403.14128 [cs.DB] https://arxiv.org/abs/2403.14128

Grace Fan, Jin Wang, Yuliang Li, Dan Zhang, and Renée Miller. 2023. Semantics-
Aware Dataset Discovery from Data Lakes with Contextualized Column-Based
Representation Learning. Proceedings of the VLDB Endowment 16 (05 2023),
1726-1739. https://doi.org/10.14778/3587136.3587146

Yukihisa Fujita, Teruaki Hayashi, and Masahiro Kuwahara. 2024. Inferring
Relationships between Tabular Data and Topics using LLM for a Dataset Search
Task. In 2024 IEEE International Conference on Big Data (BigData). IEEE, 6564~
6573.

Yuan He, Jiaoyan Chen, Denvar Antonyrajah, and Ian Horrocks. 2022. BERTMap:
a BERT-based ontology alignment system. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 36. 5684-5691.

Xuming Hu, Shen Wang, Xiao Qin, Chuan Lei, Zhengyuan Shen, Christos Falout-
sos, Asterios Katsifodimos, George Karypis, Lijie Wen, and Philip S Yu. 2023.
Automatic table union search with tabular representation learning. In Findings
of the Association for Computational Linguistics: ACL 2023. 3786-3800.

Paras Jain, Xin Luna Dong, Arash Nargesian, and Michael Stonebraker. 2023.
Large Language Models for Data Discovery and Integration: Challenges and
Opportunities. IEEE Data Eng. Bull. 46, 1 (2023), 3-14. http://sites.computer.org/
debull/A23mar/p3.pdf

Nikolaos Kardoulakis, Kenza Kellou-Menouer, Georgia Troullinou, Zoubida
Kedad, Dimitris Plexousakis, and Haridimos Kondylakis. 2021. Hint: Hybrid
and incremental type discovery for large RDF data sources. In Proceedings of the
33rd International Conference on Scientific and Statistical Database Management.
97-108.

Kaiwen Li, Tao Zhang, and Rui Wang. 2020. Deep Reinforcement Learning for
Multi-objective Optimization. IEEE Transactions on Cybernetics 50, 12 (2020),
4915-4926. https://doi.org/10.1109/TCYB.2020.2977661

Xinyun Li, Pengcheng Yin, Xilun Chen, Pranav Raghavan, Oleksandr Polozov,
Matthew Richardson, Duyu Wang, Wen-tau Yih, Preksha Nema Jain, Zhiguo
Guo, Muhao Chen, and Mu Li. 2023. ELEET: Efficient Learned Query Execution
over Text and Tables. In Proceedings of the 2023 ACM SIGMOD International
Conference on Management of Data (SIGMOD °23). ACM, 1809-1822. https:
//doi.org/10.1145/3588945.3597444

Junfei Liu, Shaotong Sun, and Fatemeh Nargesian. 2024. Causal Dataset Discovery
with Large Language Models. In Proceedings of the 2024 Workshop on Human-In-
the-Loop Data Analytics. 1-8.

Fatemeh Nargesian, Erkang Zhu, Ken Q Pu, and Renée] Miller. 2018. Table union
search on open data. Proceedings of the VLDB Endowment 11, 7 (2018), 813-825.
Phuc Nguyen, Natthawut Kertkeidkachorn, Ryutaro Ichise, and Hideaki Takeda.
2019. Mtab: Matching tabular data to knowledge graph using probability models.
arXiv preprint arXiv:1910.00246 (2019).

Masayo Ota, Heiko Mueller, Juliana Freire, and Divesh Srivastava. 2020. Data-
driven domain discovery for structured datasets. Proceedings of the VLDB En-
dowment 13, 7 (2020), 953-967.

Masayo Ota, Heiko Miiller, Juliana Freire, and Divesh Srivastava. 2020. Data-
Driven Domain Discovery for Structured Datasets. Proceedings of the VLDB
Endowment 13, 7 (2020), 953-966. https://doi.org/10.14778/3384345.3384352
Norman W. Paton, Jiaoyan Chen, and Zhenyu Wu. 2024. Dataset Discovery and
Exploration: A Survey. ACM Comput. Surv. 56, 4 (2024), 102:1-102:37.

Federico Piai, Paolo Atzeni, Paolo Merialdo, and Divesh Srivastava. 2023. Fine-
grained semantic type discovery for heterogeneous sources using clustering. The
VLDB Journal 32, 2 (2023), 305-324.

https://arxiv.org/abs/2403.14128
https://arxiv.org/abs/2403.14128
https://doi.org/10.14778/3587136.3587146
http://sites.computer.org/debull/A23mar/p3.pdf
http://sites.computer.org/debull/A23mar/p3.pdf
https://doi.org/10.1109/TCYB.2020.2977661
https://doi.org/10.1145/3588945.3597444
https://doi.org/10.1145/3588945.3597444
https://doi.org/10.14778/3384345.3384352

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

Rakesh Pimplikar and Sunita Sarawagi. 2012. Answering Table Queries on the
Web using Column Keywords. Proceedings of the VLDB Endowment 5 (06 2012).
https://doi.org/10.14778/2336664.2336665

Mohammed Saeed, Nicola De Cao, and Paolo Papotti. 2024. Querying Large
Language Models with SQL. In Proceedings 27th International Conference on
Extending Database Technology, EDBT 2024, Paestum, Italy, March 25 - March 28,
Letizia Tanca, Qiong Luo, Giuseppe Polese, Loredana Caruccio, Xavier Oriol, and
Donatella Firmani (Eds.). OpenProceedings.org, 365-372.

Aécio Santos, Aline Bessa, Christopher Musco, and Juliana Freire. 2022. A
sketch-based index for correlated dataset search. In 2022 IEEE 38th International
Conference on Data Engineering (ICDE). IEEE, 2928-2941.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2016. Prioritized
Experience Replay. In 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1511.05952

Levy Silva and Luciano Barbosa. 2024. Improving dense retrieval models with
LLM augmented data for dataset search. Knowledge-Based Systems 294 (2024),
111740.

Richard S Sutton. 1988. Learning to predict by the methods of temporal differ-
ences. Machine learning 3 (1988), 9-44.

Yuroti Tsuboi and Nobutaka Suzuki. 2019. An algorithm for extracting shape
expression schemas from graphs. In Proceedings of the ACM Symposium on
Document Engineering 2019. 1-4.

Qiming Wang and Raul Castro Fernandez. 2023. Solo: Data Discovery Using
Natural Language Questions Via A Self-Supervised Approach. Proceedings of the
ACM on Management of Data 1, 4 (2023), 1-27.

Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit Chaudhuri.
2012. Infogather: entity augmentation and attribute discovery by holistic match-
ing with web tables. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. 97-108.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. 2019. A Generalized
Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation.
CoRR abs/1908.08342 (2019).

Xiang Yu, Chengliang Chai, Guoliang Li, and Jiabin Liu. 2022. Cost-based or
learning-based? A hybrid query optimizer for query plan selection. Proceedings

(34]

(35]

[36]

of the VLDB Endowment 15, 13 (2022), 3924-3936.

Shuo Zhang and Krisztian Balog. 2017. Entitables: Smart assistance for entity-
focused tables. In Proceedings of the 40th international ACM SIGIR conference on
research and development in information retrieval. 255-264.

Shuo Zhang and Krisztian Balog. 2018. Ad hoc table retrieval using semantic
similarity. In Proceedings of the 2018 world wide web conference. 1553-1562.

Yi Zhang and Zachary G Ives. 2020. Finding related tables in data lakes for
interactive data science. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 1951-1966.

A DETAIL OF USER REQUESTS

Deep UR (3 attributes, 4 values each):

o keyword_name: Two variables, Orthogonality, Three points
rule, Mean

e topic_name: Linear Algebra, Probability, Optimization,
Discrete Mathematics

e subtopic_name: Linear Transformations, Vector Spaces,
Algebraic expressions, Equations, and Inequalities, Triple
Integration

Shallow UR (7 attributes, mostly 1 value each):

keyword_name: Cauchy problem

topic_name: Integration, Discrete Mathematics
subtopic_name: Recursivity

question_id: 80

id_lect: 2162

answer1: The system has no solution.
keyword_id: 139

https://doi.org/10.14778/2336664.2336665
http://arxiv.org/abs/1511.05952

	Abstract
	1 Introduction
	2 Related Work
	2.1 Dataset Discovery
	2.2 RL for optimization

	3 Problem and Solution
	3.1 Definitions
	3.2 Problem Statement
	3.3 Markov Decision Process Formulation
	3.4 Revisited Problem Formulation
	3.5 Deep Q-Network Solution (DQN)

	4 Experiments
	4.1 Experimental Setup
	4.2 Offline Variants
	4.3 Results

	5 Conclusion and future work
	Acknowledgments
	References
	A Detail of User Requests

