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ABSTRACT

Tabular and relational data remain the most ubiquitous formats
in real-world machine learning applications, spanning domains
from finance to healthcare. Although both formats offer structured
representations, they pose distinct challenges for modern deep
learning methods, which typically assume flat, feature-aligned in-
puts. Graph Neural Networks (GNNs) have emerged as a promising
solution by capturing structural dependencies within and between
tables. However, existing GNN-based approaches often rely on
rigid, schema-derived graphs—such as those based on primary-
foreign key links—thereby underutilizing rich, predictive signals
in non key attributes. In this work, we introduce AUGRAPH, a uni-
fied framework for task-aware graph augmentation that applies to
both tabular and relational data. AUGRAPH enhances base graph
structures by selectively promoting attributes into nodes, guided by
scoring functions that quantify their relevance to the downstream
prediction task. Empirically, AUGRAPH outperforms schema-based
and heuristic graph construction methods by producing graphs that
better support learning for relational and tabular prediction tasks.
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1 INTRODUCTION

Relational databases are a foundational data storage paradigm,
widely used to manage structured data across industry and science.
Their normalized schema—multiple interlinked tables connected
via primary-foreign key relationships—supports modularity and
efficient querying. However, this structure poses challenges for
machine learning methods that assume flat, feature-complete in-
puts. The prevailing workaround, by doing manual joins, feature
engineering and aggregations, is not only laborious and memory
intensive due to redundancy from denormalization, but also elimi-
nates the relational structure that underpins the data, potentially
leading to information loss and bias [11, 15].
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Figure 1: Graph representations of relational data.

This has motivated research into automated, structure-aware
methods for learning directly from relational without collapsing
it into a single table [1, 3, 9, 14]. Even in the tabular setting, where
data is already in a single table, graph-based approaches are used to
model implicit structure [12]. These approaches construct graphs
based on co-occurrence statistics [1], feature-wise multiplex connec-
tivity [9], attribute-level hypergraphs [3], or contextual linkage for
specific tasks like conversational Question Answering [14]. Yet, they
generally lack task-aware mechanisms to guide graph construction.

Recent advances in Relational Deep Learning (RDL) provide an al-
ternative to traditional feature engineering. RDL frameworks trans-
form relational databases into heterogeneous graphs—relational en-
tity graphs—where rows become nodes and key-based links define
edges [6]. GNNs are then applied to learn task-specific representa-
tions over these structures in an end-to-end fashion [2, 6, 16]. This
approach has achieved strong performance across multi-table pre-
diction tasks, and has recently been extended with relational graph
transformers [4] and foundation models for in-context learning
over arbitrary databases [7].

At the core of RDL and related GNN-based tabular learning
lies a persistent challenge: how to construct a graph that captures
meaningful statistical dependencies? Schema-derived graphs rely on
key-based connectivity, often resulting in sparse or semantically
limited structures. In single-table settings, various graph construc-
tions exist, but they are typically task-agnostic and not optimized
for downstream performance.

To illustrate the challenge, consider the Customer—Order-Product
relational snippet in Figure 1 (top). Beyond primary-key constraints,
each Order row carries foreign-key references into the Customer
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and Product tables. If we simply translate this to the standard re-
lational entity graph (Figure 1, bottom left), each tuple becomes a
vertex and every foreign-key relationship becomes an edge.

Although this schema-derived graph captures referential struc-
ture, it can miss other useful connections. For example, suppose we
extract the country attribute from Customer and create two new
vertices—“England” and “Belgium”—then link each customer to the
vertex corresponding to their country (Figure 1, bottom right). This
augmentation reveals that customers from the same country share
a common node, introducing edges that reflect shared attribute
values rather than just keys.

In many graph-learning tasks—whether using graph neural net-
works or graph transformers—these additional edges can be critical
for downstream predictions. We call the systematic enrichment of a
relational entity graph with nodes and edges derived from attribute
values graph augmentation, and investigating this process is the
focus of our paper.

Our contribution. We present AUGRAPH, a method that system-
atically integrates attribute-level signals into the graph structure
through a task-guided augmentation process. While AUGRAPH is
broadly applicable, in this work we focus on node-level prediction
tasks, where the goal is to improve learning for a given target rela-
tion. Unlike approaches that rely solely on fixed schema links or
indiscriminate feature inclusion, AUGRAPH evaluates and incorpo-
rates attributes based on their utility for the prediction task. This
results in graph structures that tailored to the learning objective,
applicable across both relational databases and single tables.

2 PRELIMINARIES

We recall the relational data model and then define the correspond-
ing relational entity graphs. We conclude by describing the general
graph learning approach to relational (deep) learning.

2.1 Databases

We recall some textbook definitions. Let Dom be an arbitrary do-
main of data values, and let R = {Ry,...,R,} be a schema, i.e., a
finite set of relations. Each relation R € R is associated with a finite
set of attributes att(R) C Att, where Att is a fixed collection of
attribute names. A table T for relation R consists of a finite set of
tuples (or rows) r = (r[A1],...,r[A4]) assigning values from Dom
to all attributes Ay, ..., Ag € att(R).

We enrich the schema with key and foreign-key constraints.
First, we assume that each relation R has a designated primary
key Kg C att(R). The corresponding primary-key constraint on the
table T of R requires that for all r,s € T, if r[Kgr| = s[KRr], then
r =s.Second, let £ C {(R;,Aj,R) | Ri, R € R, Aj € att(R;)} bea
set of foreign-key links. Each (R;, Aj, Ri) € L imposes a constraint
on the tables: for every tuple r in the table T; of R;, there must exist
a tuple s in the table T of Ry such that r[A;] = s[Kg,]. In other
words, the Aj-attribute of R; references the primary key of Ry.. For
simplicity, we assume single attributes foreign-key links only.

We refer to the pair (R, £) as a relational schema, and to a collec-
tion of tables D = (Ty, ..., Tp,) that satisfies all key and foreign-key
constraints as a database for that schema.

Example 2.1. Consider a schema with the following relations:

e R; = Customers(cust_id, name, country)

e Ry = Orders(cust_id, prod_id)
® R3 = Products(prod_id, category, price),

in which their attributes are listed. The primary key attributes are
underlined. Furthermore, cust_id in Orders is a foreign key refer-
encing cust_id in Customers, and prod_id in Orders is a foreign
key referencing prod_id in Products. Thus, the set of relations is
R = {R1, Rz, R3} and the foreign-key set is:

L = {(Ry, cust_id, Ry), (Ro, prod_id,R3)}.

This models a typical customer-order—product schema, where each
order links a customer to a product. We have shown an example
database of this schema in Figure 1 (top). o

> Remark. We observe that tabular data, as typically understood
in tabular learning, can be regarded as a special instance of a data-
base, consisting of a single table T of schema R = {R} and with no
foreign-key links (L = 0).

2.2 Relational Entity Graphs

We next associate a graph to a relational schema and database.
Given a schema (R, £) and a database D over that schema, we
define its relational entity graph [6] as Grgg = (V, E, ¢, 7), where

o the vertex set V is defined as V := {v, | r € Tj, R; € R},
i.e,, V contains one vertex v, for each tuple r in each table
in D;

e the edge set E is given by E := {(vr,05) | (Ri,Aj,Ry) €
L, reT;, s €Ty, r[Aj] = s[Kg.]}, ie, E contains an
edge (v, vs) whenever the corresponding tuples satisfy a
foreign-key link (R;, Aj, Rx) € £; and

e ¢ and 7 label each vertex v, by its tuple r € T; and relation
name R; of T;, respectively, i.e., ¢(v,) := r and 7(v,) := R;.

In other words, for each primary key value we have one vertex,
which ¢ labels with the corresponding record. In addition, foreign-
key links on the schema, are instantiated as edges between the
vertices (records) in the graph.

Example 2.2. Continuing with our example database, we show
the corresponding relational entity graph in Figure 1 (bottom, left).
Each row in the tables becomes a vertex in the graph. Based on the
foreign-key set, edges are added from each order to its associated
customer and product. In particular, we have edges between the red
vertex (corresponding to (ci, p1) and the vertices corresponding
to rows c; and p; in Customers and Products, respectively. Simi-
larly, we have edges between the other red vertex (corresponding
to (c2, p3) to the vertices corresponding to rows cy and p32, re-
spectively. We also remark that this yields a heterogeneous graph
with typed nodes (depending on the relation) and different kinds
of foreign-key-based edges (depending on relations and attributes
involved). o

> Remark. It should be clear that we can move freely between
schemas and databases, and relational entity graphs. That is, they
carry the same information. Of course, the connection between
tuples is explicit in the graph representation, whereas it is implicit
in the database representation.
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Figure 2: Overview of AUGRAPH. Given a tabular dataset and a task, AUGRAPH constructs a task-aware graph through iterative
attribute promotion and scoring. The resulting graph is then used by a downstream GNN to perform the learning task.

2.3 Relational Deep Learning

We focus on tuple-level (or node-level) prediction tasks. Given a
relation R; € R with corresponding table T; in a database D, the
goal is to learn a function

T - Y,

where Y denotes the space of prediction targets. In typical applica-
tions, Y may be a finite set of discrete class labels—such as will
buy or will not buy in transaction data, or disease categories in
medical diagnostics—or a subset of the real numbers in regression
tasks, such as predicting a customer’s credit risk or forecasting
future revenue.

We adopt the graph-based approach to relational learning [6],
and thus aim to model f as a function defined on nodes of a graph.
To enable this, we use — as expected — relational entity graphs. More
specifically, we extend the relational schema by introducing a new
relation Riyain (K, Y), whose table Tiyaiy contains pairs (r[K], f(r)),
where r[K] is the key of a tuple r € T; and f(r) € Y is its label.
To link training labels to data, we also introduce a foreign-key
link (Rirain, K, Ri) € L, ensuring that the key attribute K in Riyain
references the primary key of R;.

As a result, the relational entity graph Grgg = (V,E, ¢, 7) in-
cludes a set of training vertices

Virain == {or | 7 € Ty and (r[K], (7)) € Tirain},

where each training vertex v, is labeled by ¢(v,) = (r[K], y), rep-
resenting both the tuple’s key and its label. For notational conve-
nience, we will write f(v) to refer to the true label y of a training
vertex v, rather than accessing it via ¢(v)[Y].

We now define or learn f using a graph neural network (GNN),
abstracted as a function fy(G,v) € Y, which takes the relational
entity graph G and a vertex v € V (typically from the same rela-
tion R;) as input, and returns a prediction in Y. The function is
parameterized by € € ©, representing learnable parameters such as
weights and biases.

Training the model then amounts to minimizing an empirical
loss over the labeled training vertices:

min > ¢(fp(G0),f(2),

0€ Virain

for a suitable loss function ¢, such as cross-entropy (for classifica-
tion) or squared error (for regression).

3 FEATURE INFORMED GRAPH
CONSTRUCTION

We introduce AUGRAPH, a principled and scalable framework for
task-aware graph construction from relational and tabular data. Our
key insight is to treat graph construction itself as a pre-processing
step tuned for learning—augmenting the base entity graph by
promoting high-value attributes into new structural components.
These attribute-derived nodes and edges are selected via scoring
functions that capture statistical, structural, and model-based sig-
nals of predictive relevance. By iteratively augmenting the graph
based on these signals, AUGRAPH tailors the graph topology to better
support the target task, all while avoiding brute-force enumeration
of attribute subsets. As shown in Figure 2, this graph augmentation
process enhances message passing and improves GNN performance,
producing graphs that are compact, interpretable, and aligned with
the learning objective. We now describe the main components of
AUGRAPH: how attribute promotion augments the graph structure,
the scoring functions used to evaluate candidate attributes, and
how these are combined in the iterative construction procedure.

3.1 Augmenting Graphs with Attribute Nodes

In terms of databases, relational entity graph augmentation corre-
sponds to extracting a new unary table of constants from a chosen
attribute and linking it back to the original graph. More precisely,
let (R, £) be a relational schema with database D. Fix R; € R and
an attribute A € att(R;). We introduce a new unary relation Ry
with table T4 := m4(T;) = {r[A] | r € T;}, and add the foreign-key
link (R4, A, R;) to L. In graph terms, starting from the relational
entity graph Grgg = (V, E, ¢, 7) of (R, £) and D, the augmented
graph Gl({gé;
e adding vertices V4 = {vg4 : a € T4}, i.e., one vertex per each
attribute value;
o for each original vertex v € V with ¢(v) =r, 7(v) = R; and
r[A] = a, adding an edge (vg4, v); and finally,
o setting ¢(vg) := a and 7(vg) := Rga.
If multiple attributes Aq, Ay, ...

. (ALAs,...)
is denoted GRed

is obtained by

are promoted, the resulting graph

and is obtained by sequential augmentation.

3.2 Attribute Scoring Metrics

To guide graph augmentation, AUGRAPH uses task-aware scoring
functions that rank attributes by their potential to improve down-
stream prediction. Each score captures a different signal: from raw



statistical relevance to structural and model-informed criteria. We
recall that Vipain is the set of vertices in our graph, corresponding
to the tuples in the relation for which we have the actual labels and
on which we want to do learning.

Given a non-key attribute A, we evaluate its relevance for the
learning task and its potential to be used for graph augmentation,
via the following metrics:

Statistical Signal. We begin with a classical feature selection met-
ric only looking at the data represented by the underlying graph:
> Mutual Information. We define the fully joined training table
of D as Dyain = T1 »< -+ > Ty »< Tipain, where the joins are
computed based on the foreign-key links!, and compute the mutual
information between the attribute A and the label Y:

. P(a,
si(A;G) = 3 P(a,y) log ((—y)) ,
(a,y)eﬂ'A,Y(Dtxain) P(a)P(y)

where P(a, y) denotes the empirical joint probability of observing
value a for attribute A and label y in Dy,j,, and the empirical
marginals are given by P(a) = 2y B(a, y) and ls(y) =Ya P(a, Y).
This score quantifies the dependence between the attribute and the
label, and is computed directly from the tabular data.

Graph-aware Signal. We next assess whether A improves the
topology of the graph G for learning.

> Entropy Gain. The entropy gain metric measures how graph
augmentation with attribute A creates more homogeneous neigh-
borhoods with respect to the target labels in Y

For a node v, let NdG(v) denote its d-hop neighborhood in graph

G, and let N‘étrain(v) = N(d;(v) N Virain be the subset of training
nodes within it. We define the empirical label distribution over a
5€t.5 € Vigin a5 Ps(4) = by Zues ILf(w) = yl. and its entropy:

H(S) == ) Ps(y) log Ps (1)
y

Then, the entropy gain score can be written as:

[H(N(dltrain(v)) - H(Ném),train(v))] .

V€ Virain

sent(A;G) = ——

|Vtrain|
> Path Disagreement. Let Paths(u,0) = 1 if u and v in Vi, are
connected through a shared attribute-vertex in Vy4, and 0 otherwise.
Then we define the path disagreement metric as:

1
sis(A:G) =~ > Pathy(wo) I[f(w) # f(0)],
U,0€ Virain
where Z is a normalization constant. Lower values suggest that A
tends to connect nodes with the same label.

Model-based Signal. We also include a GNN-based score.

> GNN Gain. A model fy, which maps nodes in a graph to pre-
dictions, is trained once on G and then kept fixed. We assess how
augmenting the graph with attribute A affects its performance over
the validation nodes:

SGNN(A; G) = Evalfg (G(A)) - Evalfg (G),

We use natural (inner) joins to ensure that mutual information is computed only on
well-defined, observed attribute-label pairs. Outer joins or full disjunctions would in-
troduce null values and undefined combinations, which are incompatible with standard
information-theoretic measures.

where Evaly, (G) denotes the aggregated validation performance
of fp on graph G, using a task-specific metric (e.g., accuracy or F1
score). This provides a lightweight proxy for the utility of attribute
A: if its inclusion improves message passing, performance should
increase, even without retraining.

While some scores are purely statistical, and others are structure
or model-aware, all are designed to promote attributes that support
downstream learning.

3.3 Graph Augmentation Procedure

Rather than selecting a fixed top-k set of attributes in one pass,
AUGRAPH builds the graph incrementally through a selection loop.
As shown in Algorithm 1, starting from the base graph Ggrgg (line 1),
it repeatedly (loop, line 3-11) selects the highest scoring attribute
(according to a chosen scoring function, line 5) and promotes it
into the graph. After each promotion, scores are recomputed to
reflect the updated structure (line 4), favoring attributes that are
complementary rather than redundant. This process continues until
a fixed budget k is reached or the best available score falls below an
early-stopping threshold 7 (line 6). The resulting graph Gayg can
then be used as input to any downstream GNN model.

Algorithm 1 Iterative Attribute-Based Graph Augmentation with
Early Stopping

Require: Relational schema and labels f : V — Y, scoring func-
tion s(A; G), maximum attributes k, threshold 7
Ensure: Augmented graph Gayg
1: Initialize Gaug < GREG
2: Let C be the set of non-key categorical attributes
3. fori=1tok do
4 Compute s(A; Gayg) for each A € C
Let A* = argmax ¢ ¢ $(A; Gaug)
if s(A*; Gaug) < 7 then
break {Early stopping if no informative attribute remains}
end if .
Gaug Géfg)
10:  Remove A* from C
11: end for
12: return Gayg

W ® N G

4 EXPERIMENTS

We test AUGRAPH in three settings, focusing on:

(Q1) Attribute discovery: Can AUGRAPH identify task-relevant
attributes, and does promoting them improve performance?

(Q2) Relational augmentation: Can AUGRAPH enhance schema-
derived graphs in multi-table relational databases?

(Q3) Tabular graph quality: Does AUGRAPH outperform heuristic
graph construction baselines on single-table data?

4.1 Setup

We evaluate node classification performance across three regimes:
(i) synthetic relational data, (ii) single-table tabular benchmarks,
and (iii) multi-table relational databases. In each case, data is trans-
formed into a graph via a designated construction strategy, and a



fixed GNN model is trained for supervised learning. Only the graph
structure varies between runs.

The GNN used is a two-layer heterogeneous architecture built
using HeteroConv and SAGEConv from PyTorch Geometric [8], with
mean aggregation [10]. This architecture is kept constant across
all datasets and experiments to isolate the effect of the graph con-
struction itself. We intentionally avoid tuning or comparing GNN
architectures, as our goal is not to find the optimal model for a
specific dataset but rather to assess how task-aware graph augmen-
tation influences learning outcomes within a fixed GNN setting.

We compare AUGRAPH by training and evaluating a GNN over
the following graph constructions?:

o REG?3: Relational Entity Graph, as defined in Section 2.2 [6].
o All-promote: Graphs in which all attributes are promoted [19].
o Random-k: Graphs built by promoting k random attributes.

kNN Graph: Instance similarity graphs constructed via k-nearest
neighbors in feature space [5].

We evaluate models using accuracy, F1-score, and ROC-AUC.
Accuracy and F1 reflect classification quality; ROC-AUC captures
ranking performance and robustness to class imbalance.

To isolate the contribution of each signal, we run the graph
augmentation pipeline separately for each scoring function and
report results using the best-performing one per setting. We do
not use a combined selector in our experiments, though AUGRAPH
supports combining scores (e.g., via weighted aggregation), which
we leave for future exploration.

Datasets. We use three different data regimes:

o Synthetic: A relational schema modeled after relbench-h&m [6],
with a binary label defined by a known subset of attributes. This
tests AUGRAPH ability to recover relevant structure (Q1) and
improve over relational entity graphs (Q2).

e Relational: The hepatitis dataset from the CTU Relational
Datasets [13], where the task is to classify entities in a multi-table
schema. We compare AUGRAPH against relational entity graph,
all-promote, and random baselines (Q2).

e Tabular: The UCI mushroom dataset [17], treated as a flat table
without schema. This setting evaluates whether AUGRAPH can
construct effective graph structure from purely tabular data (Q3).

4.2 Results and Discussion

To evaluate (Q1), we focus on synthetic data, where the ground-
truth label depends on three specific attributes. We perform graph
augmentation using all scoring metrics and examine which at-
tributes each method promotes. With a promotion budget of k = 3,
the path-disagreement metric identifies two of the three ground-
truth attributes but ranks third in downstream performance, sug-
gesting that recovering relevant features does not necessarily yield
the most effective graph structure for learning. The gnn-gain met-
ric, while promoting only one relevant attribute, achieves the high-
est performance by aligning directly with message passing (see
Figure 3). The entropy-gain score plateaus after two promotions

2Qur goal is to isolate the impact of graph construction strategies on graph-based
learning. For this reason, we do not compare against traditional non-graph baselines
such as XGBoost or CatBoost, which do not make use of the graph structure.

3The REG baseline is not included for tabular data, as it would result in a set of
disconnected nodes.

Table 1: Performance in test data. Results are reported for k =
3 and the Random-k is averaged over 3 runs. AUGRAPH results
are from the metric that performs best on the validation set.

Model Fl-score Accuracy ROC-AUC
Synthetic Data (Relational)
REG 0.734 0.784 0.834
All-promote 0.668 0.728 0.726
Random-k 0.699 0.765 0.786
AUGRAPH (top-k, SGNN) 0.773 0.816 0.836
Relational Data
REG 0.930 0.936 0.987
All-promote 0.894 0.904 0.985
Random-k 0.917 0.924 0.988
AUGRAPH (top-k, SGNN) 0.939 0.944 0.987
Tabular Data
All-promote 0.969 0.970 0.992
Random-k 0.944 0.946 0.987
kNN Graph (k=10) 0.937 0.936 0.979
AUGRAPH (top-k, smr) 0.985 0.985 0.992

and stops, never degrading performance—suggesting greater robust-
ness. Notably, all metrics outperform the minimal relational entity
graph, showing their general utility for guiding augmentation.

Accuracy for Different Scoring Metrics and k

>

9

c

3 | —=— rec

£ mutual_info

—*— gnn_gain
entropy_gain

—¥— path_disagreement

2 a s 8 10
Augmentation Step k
Figure 3: Accuracy on augmented graph with different scor-

ing methods versus promotion budget k. Synthetic data. Best
viewed in color.

To address (Q2) and (Q3), we refer to Table 1, which compares
performance across relational and tabular benchmarks.

In the relational setting, across both synthetic and real datasets,
AUGRAPH consistently outperforms the baseline relational entity
graph. Naively promoting all attributes degrades performance, often
underperforming even the minimal graph, while random promotion
yields modest gains. These results show that structural complexity
alone is insufficient; task-aware augmentation is crucial. AUGRAPH’s
consistent improvements demonstrate that its scoring functions
successfully identify attributes that induce useful inductive bias.

In the tabular setting, where the base graph is often empty or
poorly structured, promoting random attributes proves ineffective,
likely due to arbitrary edge formation. While promoting all at-
tributes helps, it also brings redundancy and noise. AUGRAPH again



achieves the best performance, showing that feature-informed se-
lective augmentation enables compact yet expressive graphs that
improve downstream learning.

We also note that the computational cost of AUGRAPH is dom-
inated by score computation during each promotion step, rather
than by graph construction itself. When an attribute A is promoted,
one node per unique value in A is added to the graph, along with
edges connecting these to the existing nodes that contain those val-
ues. However, the scoring metrics are designed to favor attributes
that improve task-relevant connectivity, typically those with a mod-
erate number of shared values between instances. As a result, high-
cardinality attributes (which would introduce a large overhead
without aiding message passing) tend to receive low scores and are
rarely promoted. This acts as an implicit regularizer, keeping both
runtime and memory usage practical throughout the iterative pro-
cess. In practice, we observe that even a small number of promoted
attributes often yields meaningful performance improvements (cf.
Figure 3), making AUGRAPH applicable even in constrained settings.

Finally, we emphasize the importance of the promotion budget
k and the early stopping threshold 7. As seen in Table 1, promoting
low-quality attributes (as in the All-promote baseline) can obscure
the signal, but AUGRAPH’s controlled, iterative augmentation miti-
gates this risk. Moreover, as shown in Figure 3, performance tends
to plateau after a few high-quality promotions, with further addi-
tions offering diminishing or negative returns. Rather than running
until convergence, risking overfitting or unnecessary complexity,
we select k and 7 through validation performance, ensuring efficient
and robust graph construction.

5 CONCLUSIONS AND FUTURE DIRECTIONS

We have presented AUGRAPH, a principled, task-aware alterna-
tive to schema-based or heuristic graph construction for tabular
and relational data. By promoting informative attributes into the
graph topology, AUGRAPH consistently improves downstream per-
formance. To our knowledge, this is the first framework to pose
graph construction as a task-aware feature selection problem.

Looking ahead, an important direction is to extend AUGRAPH to
temporal relational data. While current scores apply to temporally-
aware graphs, they fail to capture unique dynamics—such as evolv-
ing attributes, cross-time entity links, or timestamped dependencies.
Designing temporal-sensitive scores could yield stronger structural
priors and more expressive graphs.

A second and more foundational direction is to better understand
the expressivity and generalization of task-aware graph construc-
tion. A compelling goal is to align augmentation more directly with
labels—e.g., by maximizing agreement between 1-WL colourings
and targets. This could define a notion of task-optimal graph con-
struction, offering both a theoretical target and a practical guide.
Understanding how structural properties shape generalization re-
mains an open challenge, especially given the weak empirical link
between expressivity and performance in GNNs [18]. We view this
as a promising and underexplored research avenue.
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