
Evaluating SQL Selection/Projection over Table Embeddings
Mariam Mellouli

EURECOM

Biot, France

mariam.mellouli@eurecom.fr

Paolo Papotti

EURECOM

Biot, France

paolo.papotti@eurecom.fr

ABSTRACT
Word embeddings are a powerful technique for representing and

analyzing textual data in natural language processing (NLP) tasks.

Notably, they possess a word-analogy property that represents real-

world relationships through geometric operations in the embedding

space. We study this property in the setting where embeddings are

generated from relational databases. Our study aims to determine

whether existing methods to obtain embeddings of relational tables

preserve the inherent relationships of the relational model, akin

to the word-analogy property in natural language text. By treat-

ing the learned vector space itself as an execution substrate, we

ask a simple yet unexplored question: can an embedding faithfully

stand in for the DBMS when answering basic SQL? To test this

hypothesis, we develop a framework that assesses the capability

of embeddings of relational data to answer SQL queries involving

selection and projection. This framework encompasses the gener-

ation of embeddings, the querying of these embeddings through

SQL, and the evaluation of the results. Our findings indicate that

embedding methods that pretrain on the table can capture and

reflect the original table/row/attribute relationships.

VLDBWorkshop Reference Format:
Mariam Mellouli and Paolo Papotti. Evaluating SQL Selection/Projection

over Table Embeddings . VLDB 2025 Workshop: Tabular Data Analysis

(TaDA).

VLDBWorkshop Artifact Availability:
The source code, data, and/or other artifacts will be made available

1 INTRODUCTION
Word embeddings are an essential tool in natural language pro-

cessing (NLP), offering a continuous vector space representation

of words that captures both semantic and syntactic relationships.

These embeddings are notable for their word-analogy property,

where real-world relationships can be effectively represented through

geometric operations.

In this study, we focus on methods for generating embeddings

from relational databases [8]. Recent works demonstrate that em-

bedding relational data enables several applications, such as data

integration [4] and semantic type detection [16], and even novel

SQL operators that surpass the limitations of symbolic reasoning,

allowing for semantic operations [3]. For instance, queries that

leverage word embeddings to perform semantic similarity joins and

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

analogy-based queries, extending the querying capabilities beyond

traditional SQL, such as

SELECT X.title, Y.title
FROM papers X, papers Y
WHERE X.title < Y.title AND proximity(X.tid, Y.tid) > 0.3

where tids are for the tuple ids and proximity is a function over

their embeddings.

Specifically, we investigate whether the relational semantics

inherent in databases can be preserved by embeddings, similar

to the word-analogy property observed in natural language text.

For this study, we develop a framework designed to test whether

embeddings generated from relational data can be used to answer

simple SQL queries involving selection and projection.

Our contributions are the following:

• We introduce the problem of measuring how embeddings model

the relational properties of the underlying data in the setting of

relational data.

• We introduce a methodology for the study which pivots on exe-

cuting a class of SQL queries to probe the embeddings. We deploy

the methodology in an evaluation framework.

• We examine multiple methods for generating embeddings from

relational tables, measuring the performance of the embeddings

against ground truth data retrieved directly from the relational

database.

• We analyze the limitations of the existing methods and provide

insights into their shortcomings.

We conclude discussing the implications of our research.

Related Work. Several papers have shown how to leverage word

embedding techniques in the context of relational databases to

capture meaningful relationships [3, 5, 17]. While they exploit rela-

tionships encoded in word embeddings for target applications, or

analyze properties of table embeddings such as row and column

order sensitivity, we focus on examining how well these embed-

dings preserve relational semantics for the purpose of answering

SQL queries, which offers an alternative to traditional text-to-SQL

generation approaches [12, 15]. Learning tabular representations

has been explored also for more powerful models, such as trans-

formers [1]. However, we focus on word embeddings due to their

computational efficiency, which enables the pre-training of the

embeddings for the dataset at hand.

2 PRELIMINARIES

Word Analogy In Embeddings. Word analogy tasks in word

embeddings identify and model semantic and syntactic relation-

ships between words using their vector representations. These tasks

capture both the underlying meanings and contextual nuances of

words within a given language corpus.

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

A classic example illustrating this concept is the analogy "king -

man + woman = queen" [11]. By performing vector arithmetic on

word embeddings, it is possible to extract inherent relationships be-

tween words. In this example, subtracting the vector representation

for "man" from the vector for "king," and then adding the vector for

"woman," results in a vector that is close to the vector for "queen."

This shows the embeddings’ ability to model word relationships

through simple geometric operations in the vector space.

Embeddings for Relational Data. Recent advancements in pre-

trained languagemodels for NLP tasks have spurred similar progress

in embedding relational tables for applications such as table ques-

tion answering and semantic column type annotation. The majority

of thesemodels extend foundational languagemodels, such as BERT,

and are specialized to account for the inherent structure of tables,

often leveraging vertical attention mechanisms to incorporate in-

formation across rows.

TaBERT was one of the pioneering models to extend LMs to

tabular data by integrating token-level embeddings with additional

positional embeddings, using vertical attention to capture inter-row

information with a masked column name prediction objective [14].

Following TaBERT, other models like TURL [6], TAPAS [9], and

TaPEx [10] have been proposed. Alongside these transformer-based

approaches, other methods focus on representing tables as graphs

and applying graph embedding techniques (e.g., Node2Vec) to learn

representations for entities like rows, cells, or attributes [8, 13].

These methods produce distinct vector representations for different

structural components of the table, which is relevant to our study.

Different downstream applications need distinct types of embed-

dings, depending on the level of aggregation in the table structure.

For instance, semantic column type detection relies on column em-

beddings, whereas entity matching requires row embeddings [7].

Due to these varying requirements, in this work we distinguish cell
embeddings from row and attribute embeddings, according to their

aggregation w.r.t. the table structure,

Problem Statement: Relational Semantic Preservation. Given
a relational table 𝑅 composed of attributes𝐴, tuples𝑇 , and values𝑉 ,

and an embedding generationmethod𝐸, the problem is to determine

how well 𝐸 preserves the relational semantics.

Specifically, for a given SQL query 𝑄 involving selection and

projection, the task is to measure the performance 𝑃 of the em-

beddings in terms of precision-recall metrics when these queries

are executed over the embeddings instead of the original relational

table 𝑅.

3 FRAMEWORK
To assess how well table-derived embeddings can answer SQL

queries, we develop a framework consisting of three main stages:

(1) Embedding Generation: Relational data is transformed into a

vector space using existing embedding methods. For our frame-

work, these methods must produce distinct embeddings for

individual rows and cell values.

(2) Embedding-Space Query Emulation:We introduce a two-

step process (Selection and Projection) that translates a re-

stricted class of SQL queries into operations within the embed-

ding space. This process aims to identify relevant row embed-

dings and then project out desired attribute values.

Embedding
Generation

SQL Query

SELECT title
FROM Movie
WHERE director='tarantino'
 AND year!=1992

Querying Embeddings

Selection Projection

director_tarantino

year_1992

idx_200

idx_100

director_tarantino - year_2012
idx_100

title_pulp_fiction

title_reservoir_dogs

Movie
 dataset

Figure 1: Overview of the framework for executing SQL on ta-
ble embeddings. The process begins with an input SQL query
and a relational dataset. (1) Embedding Generation: The rela-
tional data is transformed into embeddings for rows and cell
values. (2) Querying Embeddings (Selection): The conditions
from the SQL WHERE clause are converted into embedding
vectors and combined to form a query vector. This vector is
used to retrieve the top-k most similar row embeddings (e.g.,
idx_100, idx_200). (3) Querying Embeddings (Projection): For
each selected row embedding, the framework identifies the
closest attribute-value embedding corresponding to the tar-
get attribute in the SELECT clause.

(3) Evaluation: The results obtained from the embedding-space

query emulation are compared against the ground truth results

from executing the original SQL query on the database.

We now detail the core of our framework — the emulation of

SQL queries in the embedding space— as illustrated in Figure 1.

Conceptually, the pipeline emulates in the embedding space the

classic two-phase query-planner: a coarse geometric filter (selec-

tion) followed by a fine-grained value reconstruction (projection).

Selection Step: Constructing the Query Vector. The first step
focuses on the conditional part of the SQL query (i.e., the WHERE
clause) to construct a target query vector, V. This vector V identifies

a region of the embedding space close to the embeddings of rows

(tuples) that satisfy the query conditions. We then use V to retrieve

the top-𝑘 nearest row embeddings using a similarity metric, where

𝑘 is a user-defined parameter for the number of results to retrieve.

For this initial framework, we consider SQL queries with WHERE
clause. This can contain equality conditions on an attribute𝐴1 with

value 𝐷1 (e.g., A1 = ’D1’) and inequality conditions on an attribute

𝐴2 with value𝐷2 (e.g., A2 != ’D2’). We assume that the embedding

generation process provides embeddings for specific attribute-value

pairs, denoted as emb(𝐴, 𝐷), representing the value𝐷 in the context

of attribute 𝐴, e.g., emb(director, ’quentin_tarantino’).
The query vector V is computed as a weighted combination of

these attribute-value embeddings: V = 𝑤1 · emb(𝐴1, 𝐷1) − 𝑤2 ·
emb(𝐴2, 𝐷2). As in the word analogy task, the positive term gets V
closer to row embeddings that share the characteristic 𝐷1, while

the negative term aims to move it away from those with 𝐷2.

The weights𝑤1 and𝑤2 modulate the influence of each condition.

The underlying principle is that rarer values (lower frequency) are

generally more discriminative and thus should contribute more

significantly to query vector V. We derive these weights from the

2

inverse frequency of the values 𝐷1 and 𝐷2 in the active domain of

the attributes scaled to a [0.1, 1.0] range to ensure that no single

condition disproportionately dominates the query vector V.

Selection Step: Identifying Candidate Row Embeddings. Af-
ter computing the query vector V, the next task is to identify row

embeddings that are semantically close to it. We assume that the

embedding generation process produces a unique vector repre-

sentation for each row in the table. These row embeddings are

identifiable, for instance, by a specific prefix such as "idx_" followed

by a row identifier (e.g., "idx_101").

Using cosine similarity, we find the top-𝑘 row embeddings that

are most similar to V. Let these retrieved row embeddings be:

r1, r2, . . . , r𝑘 , where each r𝑗 is an embedding vector starting

with the "idx_" prefix (e.g., r1 = embedding(idx_8)). These 𝑘 row

embeddings represent the candidate tuples most likely to satisfy

the original SQL query’s conditions.

Projection Step: Retrieving Target Attribute Values. This step
extracts the value of a specific target attribute (e.g., "title") for each

of the 𝑘 candidate row embeddings r𝑗 from the selection step.

Attributes are identifiable by the prefix corresponding to the at-

tribute name followed by the value itself (e.g., "title_PulpFiction", "di-

rector_QuentinTarantino"). We then denote the embedding of value

𝐷𝑡𝑎𝑟𝑔𝑒𝑡 for the target attribute 𝐴𝑡𝑎𝑟𝑔𝑒𝑡 as emb(𝐴𝑡𝑎𝑟𝑔𝑒𝑡 , 𝐷𝑡𝑎𝑟𝑔𝑒𝑡).
For each candidate row embedding r𝑗 (where 𝑗 = 1, . . . , 𝑘):

(1) We search among all available attribute-value embeddings for

the target attribute 𝐴𝑡𝑎𝑟𝑔𝑒𝑡 . That is, we consider all embed-

dings of the form emb(𝐴𝑡𝑎𝑟𝑔𝑒𝑡 , 𝐷𝑣𝑎𝑙), where 𝐷𝑣𝑎𝑙 is any value

occurring in the column for attribute 𝐴𝑡𝑎𝑟𝑔𝑒𝑡 .

(2) We find the attribute-value embedding emb(𝐴𝑡𝑎𝑟𝑔𝑒𝑡 , 𝐷
∗
𝑗
) from

this set that is closest (using cosine similarity) to r𝑗 , with 𝐷∗
𝑗
=

argmax𝐷𝑣𝑎𝑙
cos_sim(r𝑗 , emb(𝐴𝑡𝑎𝑟𝑔𝑒𝑡 , 𝐷𝑣𝑎𝑙)).

The value 𝐷∗
𝑗
is then taken as the projected result for the target

attribute 𝐴𝑡𝑎𝑟𝑔𝑒𝑡 for the 𝑗-th candidate row.

Example. Consider the query SELECT title FROM movie WHERE

director = ’quentin_tarantino’ AND status != ’released’

1. Selection Step.
• Target attribute for equality is 𝐴1 = director with value 𝐷1 =

’quentin_tarantino’. Similarly for target attribute for inequality.

• We obtain embeddings: emb(director, ’quentin_tarantino’) and
emb(status, ’released’).

• Weights𝑤1 and𝑤2 are calculated based on inverse frequencies

(e.g., ’quentin_tarantino’ in the ’director’ column) and scaled.

• V is computed: V = 𝑤1 ·emb(director, ’quentin_tarantino’)−𝑤2 ·
emb(status, ’released’).

• We search for row embeddings (prefixed with "idx_") most similar

toV. For𝑘 = 3, retrieved row embeddings are: {r1 = emb(idx_8), r2 =
emb(idx_6), r3 = emb(idx_5)}

2. Projection Step.We retrieve (𝐴𝑡𝑎𝑟𝑔𝑒𝑡 = title), for each embed-

ding r𝑗 . For r1 = emb(idx_8), we search all emb(title, 𝐷𝑣𝑎𝑙) vectors.
If emb(title, ’Django Unchained’) is themost similar to emb(idx_8),
this is the projected value. We repeat the process for r2 , r3.

This methodology allows us to test the capability of different

table embedding techniques to preserve relational semantics for

answering SQL-like queries. By comparing the set of projected

results obtained through this embedding-space emulation with the

actual results from executing the SQL query on the database, we

quantitatively assess the effectiveness of the embedding methods

in reflecting the original relational structures.

4 EXPERIMENTAL SET-UP
To evaluate our framework, we conducted experiments using two

datasets, embedding generation techniques, and a set of SQL queries.

Datasets. We used two relational datasets:

• DBLP:A bibliographic dataset of academic publications.We used

a subset with 4 columns: title, authors, venue, and year. It
contains 56k unique author names and 62k unique publications.

• Movie: A dataset of movies with 15 columns, including title,
director, genres, and year It includes 17k unique director

names and 42k unique movie titles.

These datasets provide a mix of textual and categorical data suitable

for testing the capabilities of table embeddings.

Embedding Generation. A crucial step in our experiments is the

generation of embeddings from the relational datasets. For this pur-

pose, we employed EmbDI [4], a framework specifically designed for

creating local embeddings from heterogeneous relational databases,

which aligns with the requirements of our proposed query emula-

tion method. We discuss why alternative methods failed at this end

of the next section.

The core idea of EmbDI is to first transform a relational table

into a graph structure. In this graph:

• Each row (tuple) is represented as a node with a prefix like

"idx__" followed by the row identifier (e.g., "idx__101"). This
provides the row embeddings (e.g., r𝑗) required by our frame-

work.

• Attribute names are also represented as nodes (e.g., with prefixes

like "tt__" or "tn__").
• Individual cell values, in the context of their attribute, are also

represented as nodes, e.g., a value 𝐷 in attribute column 𝐴 is

represented as a node like "cid__A__D".
Once the graph is constructed, word embedding algorithms are

applied to learn vector representations for these nodes. EmbDI

uses random walks on this graph to generate sequences of nodes

(sentences), which then serve as input to standard word embed-

ding models like Word2Vec. This process encodes same-row, same-

attribute, and other structural relationships, making the resulting

embeddings inherently aware of the table’s relational structure.
1

Query Set. We executed SQL queries against the generated em-

beddings and compared the results with those obtained from the

original database. The queries adhere to the structure:

SELECT A FROM B WHERE C1 = 'D1' AND C2 != 'D2';

Specific instances of A, B, C1, D1, C2, and D2 were chosen from the

datasets to create diverse test queries.

Evaluation Metrics. We use Precision and Recall, calculated at

different cut-off points 𝑘 (e.g., @5, @10, @20), corresponding to

the top-𝑘 results retrieved by our framework’s selection step.

1
For generating the embeddings using EmbDI with Word2Vec, we used the following

parameters: Embedding Dimension: 300; Window Size (for Word2Vec): 3.

3

A consideration in our evaluation is the potential for duplicate

values in the projected results. While the selection step retrieves

unique row embeddings (r𝑗), the projection step operates indepen-

dently for each row embedding. Two row embeddings can have

the same attribute-value embedding as their closest match for the

projection, leading to a value projected twice. Our precision met-

ric, detailed in Appendix A.2, considers the set of unique values

projected.

Table 1: Aggregated Precision (P) and Recall (R) scores for the
selection/projection task on the Movie and DBLP datasets.
Results for table embeddings generated using Word2Vec and
Node2Vec (EmbDI framework). Metrics are evaluated at dif-
ferent row top-k retrieval thresholds (k=5, 10, and 20) in the
selection step.

@5 @10 @20

Method R P R P R P

M
ov

ie word2vec 0.60 0.80 0.74 0.70 0.90 0.60

node2vec 0.60 0.70 0.73 0.65 0.82 0.52

D
B
LP word2vec 0.42 0.85 0.53 0.8 0.74 0.70

node2vec 0.40 0.80 0.48 0.62 0.70 0.70

5 EXPERIMENTAL RESULTS AND ANALYSIS
Table 1 reports the aggregated precision and recall scores at 𝑘 ∈
{5, 10, 20} for queries on the Movie and DBLP datasets using al-

ternative embedding algorithms, Word2Vec and Node2Vec, within

EmbDI for generating the table embeddings.

On both dataset, Word2Vec and Node2Vec demonstrate compa-

rable performance overall, with Word2Vec generally maintaining

a lead in performance metrics across the different 𝑘 values. The

results indicate that our framework, instantiated with EmbDI em-

beddings, can achieve promising levels of precision and recall for

the targeted SQL query patterns.

A closer examination of individual query results (Appendix A.1)

reveals significant variations in performance depending on the

query structure, particularly the attribute being projected. Queries

projecting on attributes with high-cardinality values (e.g., title
in the Movie dataset) yielded better outcomes - in these cases, the

attribute-value embeddings are likely distinct and well-separated

in the embedding space.

Conversely, queries projecting on attributes with low-cardinality

values that have high occurrences (e.g., year or status) often per-

formed poorly. We analyzed the intermediate outputs for these

problematic queries and confirmed that the Selection step gener-

ally succeeded in identifying the correct set of ‘idx‘ row embeddings

- the query vectorVwas effective in locating the relevant rows. How-

ever, in the Projection step, when projecting onto a common value

(e.g., ‘year = 2012‘), the embedding for that specific attribute-value

pair (e.g., ‘emb(year, ’2012’)‘) might be a "hub" or an average repre-

sentation that is similarly close to many different row embeddings.

Consequently, when trying to find the closest ‘emb(year, D_val)‘ to

a specific row embedding r𝑗 , the model may struggle to distinguish

the correct year for that particular row. Essentially, the geometric

distinctiveness required for accurate projection is diminished for

high-frequency, low-cardinality attribute values.

Why Alternative Embedding Methods Fell Short. We now

discuss why other approaches did not reach comparable quality.

FastText enriches word vectors with character 𝑛-grams, a de-

sign that works well for orthographically similar tokens [2]. In our

tabular setting, however, FastText overwhelmingly captures column-
level regularities while under-representing linkswithin a tuple. Con-
cretely, the nearest neighbours of a vector director_tarantino
are other director_* tokens, whereas the corresponding idx_*
row identifiers are far away in the space. As the first step of our

method requires jumping from an attribute–value pair to its host

tuple, the selection phase fails outright for FastText embeddings:

TAPAS and TAPEX are pre-train bidirectional transformers over

entire tables, injecting structural biases (segment, row, and col-

umn embeddings) through attention. Although powerful for nat-

ural–language question answering over small tables, they proved

unsuitable here for two reasons.

First, both models cap the input at 512 tokens, which translates

to only a handful of rows. Sub-sampling defeats the purpose of

learning a global embedding space and, empirically, removed many

ground-truth tuples from consideration.

Second, they model each word piece is context-dependent; there

is no stable embedding we can extract for “row 37” or “director =
tarantino” independent of a specific query. Averaging token vectors,
an intuitive workaround, led to highly entangled representations

and near-random retrieval.

We also experimented with handing the sql string to TAPEX’s

neural executor. While syntactically valid, the model (i) could not

process tables larger than five rows and (ii) returned only single-

token answers, preventing evaluation against full projection sets.

6 CONCLUSION
Our study recasts a decades-old relational question — ‘can you

answer SQL?’ — in a vector-native setting, charting the first steps

toward fully differentiable analytics. By coupling embeddings with

a two-phase selection–projection procedure, we showed that word

analogy reasoning can be repurposed for structured data retrieval.

Yet the experiments also exposed that projection accuracy dete-

riorates whenever the target attribute has semantically close values

(e.g., years or ratings). The cosine distance between such values

and their row embeddings becomes indistinguishable, causing the

nearest-neighbour step to return spurious cells. projection still suf-

fers from value-level aliasing. A natural mitigation is to move from

a purely unsupervised projection to a supervised one, e.g., by train-

ing a small neural network that refines the attribute-value vectors

given a handful of labelled query–answer pairs.

The negative findings over other methods to obtain embeddings

also point to concrete research avenues. First, future off-the-shelf

language or table models could encode tuple identity so that pro-

jections can pivot reliably between rows and attributes. Second,

embeddings methods for tables should expose static, disentangled
vectors for both rows and attribute–value pairs.

Overall, our results establish a baseline and outline the technical

hurdles that next-generation table embeddings must overcome to

deliver fully differentiable sql over enterprise-scale datasets.

4

REFERENCES
[1] Gilbert Badaro, Mohammed Saeed, and Paolo Papotti. 2023. Transformers for

Tabular Data Representation: A Survey of Models and Applications. Trans. Assoc.
Comput. Linguistics 11 (2023), 227–249. https://doi.org/10.1162/TACL_A_00544

[2] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.

Enriching Word Vectors with Subword Information. TACL 5 (2017), 135–146.

[3] Rajesh Bordawekar and Oded Shmueli. 2017. Using Word Embedding to Enable

Semantic Queries in Relational Databases. In Proceedings of the 1st Workshop on
DataManagement for End-to-EndMachine Learning (Chicago, IL, USA) (DEEM’17).
Association for Computing Machinery, New York, NY, USA, Article 5, 4 pages.

https://doi.org/10.1145/3076246.3076251

[4] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020.

Creating Embeddings of Heterogeneous Relational Datasets for Data Integration

Tasks. In SIGMOD.
[5] Tianji Cong, Madelon Hulsebos, Zhenjie Sun, Paul Groth, and H. V. Jagadish.

2024. Observatory: Characterizing Embeddings of Relational Tables. Proc. VLDB
Endow. 17, 4 (mar 2024), 849–862. https://doi.org/10.14778/3636218.3636237

[6] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2020. TURL: Table

Understanding through Representation Learning. Proc. VLDB Endow. 14, 3 (2020),
307–319. https://doi.org/10.5555/3430915.3442430

[7] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad

Ouzzani, and Nan Tang. 2018. Distributed representations of tuples for entity

resolution. PVLDB 11, 11 (2018), 1454–1467.

[8] Martin Grohe. 2020. word2vec, node2vec, graph2vec, X2vec: Towards a Theory of

Vector Embeddings of Structured Data. In Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (Portland, OR, USA)
(PODS’20). Association for Computing Machinery, New York, NY, USA, 1–16.

https://doi.org/10.1145/3375395.3387641

[9] Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Müller, Francesco Piccinno,

and Julian Martin Eisenschlos. 2020. TaPas: Weakly Supervised Table Parsing

via Pre-training. In ACL. ACL, 4320–4333. https://doi.org/10.18653/v1/2020.acl-

main.398

[10] Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and

Jian-Guang Lou. 2021. TAPEX: Table Pre-training via Learning a Neural SQL

Executor. https://arxiv.org/abs/2107.07653v3.

[11] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed Representations of Words and Phrases and their Compositional-

ity. In Advances in Neural Information Processing Systems, C.J. Burges, L. Bot-
tou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (Eds.), Vol. 26. Cur-

ran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2013/file/

9aa42b31882ec039965f3c4923ce901b-Paper.pdf

[12] Simone Papicchio, Paolo Papotti, and Luca Cagliero. 2023. QATCH:

Benchmarking SQL-centric tasks with Table Representation Learn-

ing Models on Your Data. In Advances in Neural Information Pro-
cessing Systems. http://papers.nips.cc/paper_files/paper/2023/hash/

62a24b69b820d30e9e5ad4f15ff7bf72-Abstract-Datasets_and_Benchmarks.html

[13] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge graph

embedding: A survey of approaches and applications. IEEE Transactions on
Knowledge and Data Engineering 29, 12 (2017), 2724–2743.

[14] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020.

TaBERT: Pretraining for joint understanding of textual and tabular data. arXiv
preprint arXiv:2005.08314 (2020).

[15] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, DongxuWang, Zifan Li, James

Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev.

2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-

Domain Semantic Parsing and Text-to-SQL Task. In EMNLP. Association for

Computational Linguistics, 3911–3921. https://doi.org/10.18653/v1/D18-1425

[16] Dan Zhang, Madelon Hulsebos, Yoshihiko Suhara, Çağatay Demiralp, Jinfeng Li,

and Wang-Chiew Tan. 2020. Sato: contextual semantic type detection in tables.

Proc. VLDB Endow. 13, 12 (jul 2020), 1835–1848. https://doi.org/10.14778/3407790.

3407793

[17] Zixuan Zhao and Raul Castro Fernandez. 2022. Leva: Boosting Machine Learning

Performance with Relational Embedding Data Augmentation. In Proceedings
of the 2022 International Conference on Management of Data (Philadelphia, PA,
USA) (SIGMOD ’22). Association for Computing Machinery, New York, NY, USA,

1504–1517. https://doi.org/10.1145/3514221.3517891

A MORE EXPERIMENTAL RESULTS
A.1 Detailed Results per Query
Tables 2 (Node2Vec) and 3 (Word2Vec) present a granular view

of the performance metrics (Precision P and Recall R at k={5, 10,

20}) for a sample of individual SQL queries executed on the Movie

dataset. These detailed results complement the aggregated scores

in Table 1 and offer deeper insights into how the proposed selec-

tion/projection framework behaves under different query condi-

tions and for different target attributes.

Generally, across both embedding methods, we observe trends

consistent with the main findings. Recall (R) tends to increase or

stabilize as 𝑘 (the number of retrieved row embeddings) increases

from 5 to 20. This is expected, as a larger retrieval set has a higher

chance of capturing more of the ground truth tuples. Precision (P),

however, can exhibit more varied behavior; it may decrease if the

additional retrieved rows are incorrect, or it may improve/stabilize if

the initial selections were highly accurate and further correct items

are found. The overall performance patterns between Word2Vec

and Node2Vec for specific queries are largely similar, reinforcing

the observation that both methods, when used within EmbDI, yield

comparable capabilities for this task.

The impact of attribute cardinality on projection accuracy is

evident in these detailed results.

• High-Cardinality Projections (e.g., SELECT title): Queries
projecting onto the high-cardinality title attribute (e.g., select
title from movie where director = ’quentin_tarantino’)
consistently demonstrate strong performance. For instance, in

Table 3, this query achieves P@20 of 0.83 and R@20 of 1.00. This

indicates that the selection step effectively identifies relevant

rows, and the distinct embeddings for movie titles allow for

accurate projection from these selected rows. Similar trends are

observed for Node2Vec.

• Low/Medium-Cardinality Projections (e.g., SELECT year,
SELECT status):When projecting onto attributeswith lower car-

dinality, such as year or status, the results can be more mixed,

illustrating the "hub" effect. For example, for the query select
status from movie where director = ’quentin_tarantino’
(n=2 expected results), both Node2Vec and Word2Vec achieve

R@5 of 0.50 and P@5 of 0.50. This suggests that while one of

the two correct rows might be selected and its status correctly

projected, the other might be missed or an incorrect status pro-

jected, even if the row itself was selected. This highlights that

even if a row embedding is correctly retrieved by the selection

step, projecting a common, less distinctive attribute value can

be difficult.

• Impact of Query Complexity and Selectivity: Queries with
very specific conditions that result in a small number of ground

truth tuples (e.g., select title ... WHERE director = ’...’
AND year = ’...’with n=1) can achieve perfect recall and high

precision if the query vector successfully isolates the correct row

embedding. Conversely, queries involving multiple negations

that yield a very large number of expected tuples (e.g., select
title from movie where director != ’...’ and status
!= ’...’ and genres != ’...’ with n=4922 or n=42176)

demonstrate a significant challenge. In both tables, these queries

show R@k = 0.00 for all k. The query vector, formed by subtract-

ing multiple attribute-value embeddings, does not effectively

point towards the vast set of correct row embeddings within

the top-k results. This underscores the limitations of the current

vector arithmetic approach for very broad, negatively defined

conditions.

These query results reinforce the conclusion that while the se-

lection step often performs robustly in identifying candidate rows,

5

https://doi.org/10.1162/TACL_A_00544
https://doi.org/10.1145/3076246.3076251
https://doi.org/10.14778/3636218.3636237
https://doi.org/10.5555/3430915.3442430
https://doi.org/10.1145/3375395.3387641
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
http://papers.nips.cc/paper_files/paper/2023/hash/62a24b69b820d30e9e5ad4f15ff7bf72-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/62a24b69b820d30e9e5ad4f15ff7bf72-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.14778/3407790.3407793
https://doi.org/10.14778/3407790.3407793
https://doi.org/10.1145/3514221.3517891

Table 2: Performance Metrics for a sample of SQL queries executed over embeddings with Node2Vec. Attribute 𝑛 is the number
of expected tuples in the ground truth.

Query n R@5 P@5 R@10 P@10 R@20 P@20

select title from movie where director = ’quentin_tarantino’ 10 0.50 1.00 0.80 1.00 1.00 0.83

select title from movie where director = ’quentin_tarantino’ and status =
’released’

10 0.50 1.00 0.80 1.00 1.00 0.83

select title from movie where director = ’quentin_tarantino’ and year =
2012.0

1 1.00 0.25 1.00 0.11 1.00 0.06

select title from movie where director = ’quentin_tarantino’ and year !=
2012.0

9 0.56 1.00 0.78 0.88 1.00 0.75

select title from movie where director = ’quentin_tarantino’ and genres =
’action’

3 1.00 0.60 1.00 0.38 1.00 0.25

select title from movie where director = ’quentin_tarantino’ and genres !=
’action’

9 0.56 1.00 0.89 1.00 1.00 0.75

select title from movie where director = ’quentin_tarantino’ and status !=
’released’ and year = 2012.0

1 1.00 0.25 1.00 0.11 1.00 0.06

select title from movie where director = ’quentin_tarantino’ and status =
’released’ and year != 2012.0

9 0.56 1.00 0.78 0.88 1.00 0.75

select title from movie where director = ’quentin_tarantino’ and status =
’released’ and genres = ’action’

3 1.00 0.60 1.00 0.38 1.00 0.25

select title from movie where director = ’quentin_tarantino’ and status =
’released’ and genres != ’action’

7 0.43 0.60 0.86 0.75 1.00 0.58

select title from movie where director = ’quentin_tarantino’ and status !=
’released’ and genres = ’action’

8 0.62 1.00 1.00 1.00 1.00 0.67

select title from movie where director = ’quentin_tarantino’ and status !=
’released’ and genres != ’comedy’

2 1.00 0.40 1.00 0.25 1.00 0.17

select title from movie where director = ’quentin_tarantino’ and status =
’released’ and genres = ’comedy’

8 0.62 1.00 0.88 0.88 1.00 0.67

select title from movie where director = ’quentin_tarantino’ and status =
’released’ and genres != ’comedy’

8 0.62 1.00 1.00 1.00 1.00 0.67

select title from movie where director != ’quentin_tarantino’ and status !=
’released’ and genres != ’action’

4922 0.00 1.00 0.00 1.00 0.00 1.00

select title from movie where director != ’quentin_tarantino’ and actor_1
!= ’samuel_l_jackson’ and actor_2 != ’samuel_l_jackson’ and actor_3 !=
’samuel_l_jackson’

42176 0.00 1.00 0.00 1.00 0.00 1.00

select year from movie where director = ’quentin_tarantino’ 10 0.50 1.00 0.80 1.00 1.00 1.00

select status from movie where director = ’quentin_tarantino’ 2 0.50 0.50 0.50 0.50 0.50 0.50

select genres from movie where director = ’quentin_tarantino’ 6 0.17 0.50 0.33 0.67 0.67 0.67

select genres from movie where director = ’quentin_tarantino’ and status =
’released’

5 0.40 0.67 0.60 0.60 0.80 0.67

select status from movie where director = ’quentin_tarantino’ and year =
2012.0

2 0.50 0.50 0.50 0.50 0.50 0.50

select status from movie where director = ’quentin_tarantino’ and year !=
2012.0

2 0.50 0.50 0.50 0.50 0.50 0.50

select year from movie where director = ’quentin_tarantino’ and genres =
’action’

3 1.00 0.60 1.00 0.38 1.00 0.30

Average 0.59 0.74 0.74 0.68 0.82 0.58

the projection step’s accuracy is highly dependent on the distinc-

tiveness of the target attribute’s value embeddings. The frame-

work shows promise, particularly for well-defined queries and

high-cardinality projections, but also reveals areas for future im-

provement, especially in handling low-cardinality projections and

complex negative conditions.

A.2 Role of Duplicates
A consideration in our evaluation is the potential for duplicate

values in the projected results and how these relate to the ground

truth, which may itself contain duplicate attribute values across dif-

ferent tuples. The selection step of our framework retrieves unique

row embeddings (e.g., identified by unique idx_*). However, the
projection step operates independently for each selected row. This

means that multiple distinct row embeddings, if they share the

same true attribute value, can (and ideally should) project to that

same attribute-value embedding. Furthermore, if multiple selected

row embeddings are similar enough to the same incorrect attribute-

value embedding, this incorrect value could also appear as a du-

plicate in our projected results. Our precision calculation counts

6

Table 3: Performance Metrics for a sample of SQL queries executed over embeddings with Word2Vec. Attribute 𝑛 is the number
of expected tuples in the ground truth.

Query n R@5 P@5 R@10 P@10 R@20 P@20

select title from movie where director = ’quentin_tarantino’ 10 0.50 1.00 0.60 1.00 1.00 0.83

select title from movie where director = ’quentin_tarantino’ and status =
’released’

10 0.40 1.00 0.60 1.00 1.00 0.83

select title from movie where director = ’quentin_tarantino’ and year =
2012.0

1 1.00 0.25 1.00 0.11 1.00 0.07

select title from movie where director = ’quentin_tarantino’ and year !=
2012.0

9 0.56 1.00 0.56 0.83 1.00 0.75

select title from movie where director = ’quentin_tarantino’ and genres =
’action’

3 1.00 0.60 1.00 0.43 1.00 0.25

select title from movie where director = ’quentin_tarantino’ and genres !=
’action’

9 0.56 1.00 0.67 1.00 1.00 0.75

select title from movie where director = ’quentin_tarantino’ and status !=
’released’ and year = 2012.0

1 1.00 0.25 1.00 0.11 1.00 0.06

select title from movie where director = ’quentin_tarantino’ and status =
’released’ and year != 2012.0

9 0.33 1.00 0.67 0.86 1.00 0.75

select title from movie where director = ’quentin_tarantino’ and status =
’released’ and genres = ’action’

3 1.00 0.75 1.00 0.38 1.00 0.25

select title from movie where director = ’quentin_tarantino’ and status =
’released’ and genres != ’action’

7 0.57 0.80 0.71 0.83 1.00 0.58

select title from movie where director = ’quentin_tarantino’ and status !=
’released’ and genres = ’action’

8 0.62 1.00 1.00 0.89 1.00 0.67

select title from movie where director = ’quentin_tarantino’ and status !=
’released’ and genres != ’comedy’

2 1.00 0.50 1.00 0.25 1.00 0.17

select title from movie where director = ’quentin_tarantino’ and status =
’released’ and genres = ’comedy’

8 0.50 1.00 0.62 0.83 1.00 0.67

select title from movie where director = ’quentin_tarantino’ and status =
’released’ and genres != ’comedy’

8 0.62 1.00 1.00 1.00 1.00 0.67

select title from movie where director != ’quentin_tarantino’ and status !=
’released’ and genres != ’action’

4922 0.00 1.00 0.00 1.00 0.00 1.00

select title from movie where director != ’quentin_tarantino’ and actor_1
!= ’samuel_l_jackson’ and actor_2 != ’samuel_l_jackson’ and actor_3 !=
’samuel_l_jackson’

42176 0.00 1.00 0.00 1.00 0.00 1.00

select year from movie where director = ’quentin_tarantino’ 10 0.50 1.00 0.60 1.00 1.00 1.00

select status from movie where director = ’quentin_tarantino’ 2 0.50 1.00 1.00 0.40 1.00 0.33

select genres from movie where director = ’quentin_tarantino’ 6 0.17 0.50 0.50 0.75 0.67 0.80

select genres from movie where director = ’quentin_tarantino’ and status =
’released’

5 0.20 0.33 0.60 0.60 0.60 0.60

select status from movie where director = ’quentin_tarantino’ and year =
2012.0

2 1.00 1.00 1.00 0.67 1.00 0.40

select status from movie where director = ’quentin_tarantino’ and year !=
2012.0

2 0.50 1.00 1.00 0.40 1.00 0.33

select year from movie where director = ’quentin_tarantino’ and genres =
’action’

3 1.00 0.60 1.00 0.43 1.00 0.30

Average 0.59 0.76 0.74 0.69 0.88 0.57

such projected duplicates as distinct items in the denominator. This

section clarifies this interaction using a specific example.

Consider the query: SELECT year FROM dblp_scholar WHERE
authors = ’m_stonebraker’. Table 4 details the framework’s

output for this query, focusing on the projected year attribute. The
ground truth for this query contains 11 unique ’year’ values, which

together account for 36 occurrences (tuples) in the dblp_scholar
table for ’m_stonebraker’.

The "indexes" column in Table 4 lists the actual row identifiers

(tuples) from the database that correspond to each unique ground

truth ’year’ for ’m_stonebraker’. The "found" column indicates,

for each of these ground truth instances, whether our framework

(specifically, using 𝑘 = 20 in the selection step) successfully selected

the corresponding row embedding *and* correctly projected its

’year’ value. For example, for the year ’1992’, which appears for two

distinct row indexes (56143 and 39525), both are marked as "yes",

meaning our framework correctly identified ’1992’ for both these

underlying tuples. Similarly, for the ’nan’ (representing missing

year data) value, which has 22 occurrences in the ground truth, the

"found" column shows "yes" for 9 of these specific row indexes.

7

Table 4: Results for "select year from dblp_scholar where
authors = ‘m_stonebraker’"

Value occurrence indexes found

nan 22

3914,
11907,
13407,

13730,

18611,

19059,

23862,
28243,
29586,

33942,

37181,
38652,

46946,
53936,

60184,

61396,

61745,
62794,

62919,

63976,
64053,

66317

yes,
yes,
no,

no,

no,

no,

yes,
yes,
no,

no,

yes,
no,

yes,
no,

no,

no,

yes,
no,

no,

yes,
no,

yes

1998 3

1097,

43374,

16697

no,

no,

yes

1994 2

54341,
22570

yes,
no

1992 2

56143,
39525

yes,
yes

1990 1 8405 yes
1989 1 16252 no

1976 1 27120 yes
1975 1 35929 yes
1980 1 36691 yes
2002 1 247 yes
2003 1 322 yes
11 36 - 20

The final row of Table 4 ("11 | 36 | - | 20") summarizes the overall

outcome:

• There are 11 unique ground truth ’year’ values.

• These 11 unique values correspond to 36 total occurrences
(tuples) in the ground truth for ’m_stonebraker’.

• From the 𝑘 = 20 row embeddings selected by our framework,

20 correct projections of ’year’ values were made. These 20

correct projections correspond to identifying 10 out of the 11
unique ground truth ’year’ values.
In this specific instance, the year ’1989’ (which has 1 occurrence

in the ground truth, index 16252) was not found by our model.

Therefore, the recall, when calculated based on *unique* ground

truth values, is 10/11 ≈ 0.909. The precision calculation considers

the set of *unique projected values* that were correct. If, among

the values projected from the 20 selected rows, exactly these 10

unique correct ’year’ values appeared (even if some, like ’1992’,

were projected multiple times from different selected row embed-

dings corresponding to distinct ground truth tuples) and no other

incorrect ’year’ values were projected, then the precision based on

unique projected values would be 10/10 = 1.0.

This example illustrates that our evaluation acknowledges the

distinction between unique values and their multiple occurrences.

The recall reflects the proportion of unique ground truth values

recovered. The precision, as defined, is sensitive to whether any

incorrect unique values are projected, regardless of howmany times

correct values are (correctly) duplicated due to multiple ground

truth tuples sharing that value being selected. This approach aims to

penalize the introduction of erroneous information while crediting

the retrieval of all distinct correct pieces of information.

8

	Abstract
	1 Introduction
	2 Preliminaries
	3 Framework
	4 Experimental set-up
	5 Experimental Results and Analysis
	6 Conclusion
	References
	A More Experimental Results
	A.1 Detailed Results per Query
	A.2 Role of Duplicates

