A Vision for SQL-Based Relational Deep Learning

Fahim Shahriar Khan
University of Texas at Arlington
fsk2739@mavs.uta.edu

ABSTRACT

Much of the world’s structured enterprise data resides in relational
databases. Therefore, it is important to design machine learning
models that are tailored to the specific characteristics of tabular
data in relational databases. One such machine learning model that
has recently been proposed is Relational Deep Learning (RDL). In
RDL, a relational database is modeled as a heterogeneous graph.
Each row in a table of the database represents a node in this graph,
and each foreign-key link between two rows represents an edge.
Graph Neural Network (GNN) techniques are used to train a deep
learning model on this graph that can be used for various prediction
tasks on the relational database. In this paper, we propose that
much of the computation required for training and inference in
RDL can be done in SQL, inside the database management system
(DBMS). Using SQL is good for performance since it minimizes data
movement from the DBMS to the deep learning software and can
utilize the bulk query processing capabilities of the DBMS. It is also
good for expressiveness, since the full power of SQL can be used in
different stages of the training pipeline, such as sampling training
data. We discuss different possibilities for integration between the
SQL DBMS and the deep learning software in an RDL pipeline. We
also present our preliminary efforts implementing these ideas, and
show that using SQL enables much simpler and more powerful
sampling of training data for the GNN compared to exporting the
database as a graph and performing the sampling in PyTorch or a
similar system. We also outline future research directions for this
nascent and promising research area.

VLDB Workshop Reference Format:

Fahim Shahriar Khan and Ashraf Aboulnaga. A Vision for SQL-Based
Relational Deep Learning. VLDB 2025 Workshop: Tabular Data Analysis
(TaDA).

1 INTRODUCTION

Relational databases commonly store tabular data using well-defined
schemas and foreign-key links that connect different tables. Tradi-
tionally, extracting predictive signals from such data for machine
learning models required laborious manual feature engineering:
domain experts join tables and craft summary features to flatten
the data into a single table for modeling. This process is time-
consuming, error-prone, and often suboptimal, as it can discard
important relational structure [26]. Recent advances in deep learn-
ing offer a compelling alternative: Graph Neural Networks (GNNs)
can directly learn from the inherent structure of relational data by
representing the database as a graph [7]. In this paradigm, each row

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

Ashraf Aboulnaga
University of Texas at Arlington
ashraf.aboulnaga@uta.edu

in each table of the database becomes a node in the graph and each
foreign-key relationship becomes an edge, yielding a heterogeneous
graph that represents the entire database. By training a GNN on this
graph, one can automatically learn rich embeddings for each entity
that integrate information from related records. This approach, re-
cently termed Relational Deep Learning (RDL) [10], eliminates the
need for manual feature engineering and results in powerful and
accurate machine learning models for various prediction tasks.

However, applying GNNs to relational databases in the RDL
paradigm is far from straightforward. The graph induced by a data-
base schema is heterogeneous, containing multiple node types (one
per table) and edge types (one per foreign-key relationship). Thus,
starting from any node in the graph, one can define diverse multi-
hop paths that vary in the types of nodes connected and edges
followed. It is not obvious which of these multi-hop paths are most
relevant for a given prediction task on a given database. Typical
GNN approaches are message passing neural networks. They work
by collecting and aggregating messages from neighbors of each node
in the training data. To reduce the cost of training, message passing
is sometimes done on a sample of the neighbors of a node. These
GNN approaches do not distinguish between node types and edge
types and treat all neighbors and paths the same [13], which can
introduce noise and dilute important signals in an RDL setting.
For example, if we are using RDL to predict customer churn in an
e-commerce database, the graph may contain nodes representing
rows from a customer table linked to nodes representing purchases,
products, and reviews (from the respective tables). Without guid-
ance, a GNN would give equal treatment during training to all
types of nodes that neighbor a customer node, even though recent
purchase nodes could be far more predictive of churn than older
interactions through, say, review nodes. The key point is that in
a large, multi-table graph with diverse link types, the GNN needs
to focus on the proper subset of relationships for sampling and
message passing during training. Researchers have begun to tackle
this issue by identifying the most relevant multi-hop paths for a
prediction task, often described as meta-paths in heterogeneous
network analysis. In RDL, this can be done by leveraging semantic
information from the relational database schema. We present more
background about GNNs in Section 2.

Given the need for sophisticated GNN training, a typical RDL
training pipeline proceeds as follows: (1) Convert the entire rela-
tional database into a heterogeneous graph and store it in a format
understandable by PyTorch [22] or a similar deep learning system
[1]. (2) Sample the graph to extract training data, possibly using
meta-path rules to focus on certain multi-hop paths. (3) Train the
GNN on the extracted data, possibly using a library such as PyTorch
Geometric (PyG) [11]. (4) Repeat from Step 2 until convergence.

In this paper, we propose that much of the work required
for RDL training (and inference) can be done in SQL, inside a
relational database management system (DBMS). Using SQL has


https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

several advantages. First, it can minimize data movement from the
DBMS to the deep learning system since some of the data filtering
and aggregation required for creating training data can be done
inside the DBMS. Second, using SQL enables the full expressive
power of SQL to be used in choosing and aggregating the nodes and
edges to include when sampling the graph during training. Third,
it may be possible to completely eliminate the need to convert
the relational database into a graph. While modeling the database
as a heterogeneous graph is useful at the conceptual level, this
graph may remain a virtual construct that is never materialized.
Fourth, by carefully dividing the work of training the GNN (and
inference) between the DBMS and the deep learning system, it may
be possible to use the full query processing power of the DBMS, for
example, optimized query plans, joins on data bigger than memory,
bulk operators, and pipelined query processing. We present more
details of our vision for SQL-based RDL in Section 3, and we discuss
different possibilities for integration between the SQL DBMS and
the deep learning system.

We have taken preliminary steps in implementing a system that
realizes this vision, which we call SQL-GNN (Section 4). The cur-
rent focus of SQL-GNN is using SQL queries for schema-guided
sampling of the database to create training data for the GNN. The
core idea is to leverage SQL queries to define the neighborhood
that each node in the training data will receive messages and ag-
gregate information from. Instead of relying on uniform or ad-
hoc neighbor selection, we allow the user to specify — in SQL -
which connected records should be considered as a node’s neigh-
bors during GNN message passing. For example, a SQL query can
select all products purchased by a customer in the last six months
as that customer’s neighborhood, reflecting a specific meta-path
(Customer— Order—Product) with a temporal filter. Our SQL-
defined neighborhood sampling provides several benefits: (1) It
is inherently schema-aware — the query explicitly navigates the
relational schema, so the GNN only traverses meaningful joins (e.g.,
customer—sbuys—sproduct) as opposed to arbitrary links). (2) It
is task-specific — one can tailor the SQL conditions to focus on
relationships relevant to the prediction problem (e.g., restricting
purchases by recency or price). (3) It can exploit the performance
of database optimizations - by delegating neighbor selection to the
DBMS, we use mature query optimizers and indexing to retrieve
neighborhoods efficiently. By integrating declarative querying with
GNN training, we obtain a flexible framework for relational deep
learning that maintains the full expressive power of SQL while
harnessing end-to-end graph learning.

We conclude the paper and outline a future research agenda for
this nascent and important research area in Section 6.

2 BACKGROUND
2.1 Relational Deep Learning

A relational database can naturally be transformed into a graph
structure for deep learning, where each tuple (row) becomes a
node and each foreign-key relationship corresponds to an edge.
The result is a heterogeneous graph where the type of a node is
determined by its table name (entity type), and the type of an
edge is determined by the foreign-key relationship it represents
according to the schema (relationship type). This approach was

formalized by recent work on Relational Deep Learning (RDL) [10],
which demonstrates that converting a database into a graph and
applying GNNs end-to-end can eliminate the need for manual joins
and handcrafted features. By preserving the complete relational
structure, the GNN has enough information and degrees of freedom
to learn which attributes and connections are important, rather than
relying on a data scientist’s intuition. RDL is gaining prominence
not only in academic research but also in industry. Companies are
pioneering efforts to apply RDL on enterprise data, for example, by
developing Relational Foundation Models [21].

Many real-world domains yield relational graphs. For example,
an e-commerce database may have tables for customers, orders, and
products; after conversion, we get a graph where a customer node
connects to an order node (via a “customer-placed-order” edge),
which connects to product nodes (via “order-contains-product”
edges). A GNN operating on this graph can aggregate informa-
tion from purchased products into the customer’s representation,
enabling predictions of customer behavior (e.g., churn or lifetime
value) using signals that would be lost in a flattened table. Exam-
ples like this illustrate how multiple domains can benefit from
representing the multi-table structure in a graph format, laying the
groundwork for graph-based representation learning on relational
data. The key to learning an effective representation is to use an
appropriate GNN technique, and we turn to this topic next.

2.2 Message Passing Graph Neural Networks on
Heterogeneous Graphs

2.2.1 Message Passing GNNs and GraphSAGE. Graph neural net-
works (GNNs) learn node embeddings through iterative message
passing between neighbors [19]. At each layer of a GNN, every
node collects and aggregates feature information from its adjacent
nodes and updates its own representation; after k layers, a node’s
embedding encodes information from all nodes within k hops. This
framework is powerful because it lets the model exploit complex
relationships in the data, often outperforming traditional methods
that rely on engineered features.

In practice, one must typically sample or restrict neighbors for
aggregation to improve performance and control computational
cost. For instance, GraphSAGE [13], which is a popular and flexible
GNN approach, uses a strategy of sampling a fixed number of
neighbors uniformly at random and learns weight matrices that
transform and aggregate information from these sampled neighbors.
We use a technique that builds on GraphSAGE in this paper.

2.2.2  Adapting GraphSAGE to Heterogeneous Graphs. GraphSAGE
was developed for homogeneous graphs, and it makes no provision
for nodes and edges of different types. Several frameworks extend
GraphSAGE to handle heterogeneous graphs by grouping neigh-
bors by type and applying type-specific transformations during
aggregation [5]. Two examples are described next.

HinSAGE [6]: This is an extension of GraphSAGE for hetero-
geneous information networks that was introduced to support
tasks like link prediction and node classification in multi-relational
graphs. HinSAGE explicitly accounts for different neighbor types
and relation types by maintaining separate weight matrices for
each relation when aggregating neighbors. In practice, a HInSAGE



layer groups a node’s neighbors by their edge type (or, equivalently,
by the neighbor node’s type) and computes an aggregated message
from each group [5]. These type-specific neighbor representations
are then combined (e.g., concatenated or summed) with the node’s
own features to produce the updated embedding. By assigning dis-
tinct transformation weights to each neighbor group, HinSAGE
preserves schema information (what type the neighbor is and how
it is connected) during message passing. The original implemen-
tations of HInSAGE have primarily used simple aggregators (such
as mean pooling) per neighbor type. However, in principle, any
GraphSAGE aggregator (max-pooling, LSTM, attention, etc.) can
be applied within each type group.

HetGNN [31]: This is a hierarchical GNN designed to capture
structural and attribute heterogeneity in graphs. HetGNN operates
through a two-step aggregation process. First, it samples a fixed-size
set of heterogeneous neighbors for each node using random walks
with restart and groups them by type. Then, each group’s neighbors
are encoded separately using a type-specific bi-directional LSTM fol-
lowed by mean pooling. Subsequently, HetGNN performs intra-type
aggregation, combining embeddings of same-type neighbors into
one vector per type using another Bi-LSTM and averaging. Finally,
an attention mechanism aggregates these type-specific vectors,
weighting their relative importance when updating the target node.
This hierarchical approach (neighbors—type, then type—target
node) enables HetGNN to effectively capture both within-type and
cross-type interactions, albeit with increased model complexity and
training time due to the multiple LSTMs and attention mechanisms.

Such schema-agnostic sampling treats all neighbor types equally,
which means the GNN could end up focusing on many irrelevant
or less informative neighbors. If a particular node is incident to
an overwhelmingly large number of edges (e.g., a popular product
linked to thousands of orders), it will dominate the messages a node
receives, even if those messages are not the most useful for the task.
Conversely, important but subtler patterns risk being drowned out
by the sheer volume of other neighbor information.

2.2.3  Schema-Aware Message Passing. Recent research has pro-
posed techniques to incorporate schema semantics into GNNs. One
approach is to use predefined, expert-selected meta-paths (specific
sequences of node/edge types) to guide the message passing. For
example, metapath2vec generates embeddings by running random
walks that follow a given meta-path in the heterogeneous graph,
thereby capturing semantic connectivity along that path [8]. More
recent models like Graph Transformer Networks (GTNs) can even
learn which meta-paths are useful, dynamically generating com-
posite relations between node types and building new connectivity
accordingly [29]. By focusing on task-relevant connections, these
methods have shown improved performance on heterogeneous
graph benchmarks [9, 15, 16]. However, both approaches have
limitations: metapath2vec and similar methods require significant
domain knowledge to choose meta-paths, while GTNs add consid-
erable complexity to the model and slow down training. There is
still a need for a simpler, declarative approach to leverage relevant
relational structure in GNN training.

Our approach in this paper addresses these issues by leveraging
the relational schema in a more direct, declarative way through
SQL-based neighbor sampling. By using SQL queries to specify

which neighbors to retrieve for each node, we achieve schema-
aware (and even task-specific) sampling that is both flexible and
efficient. The SQL query can naturally encode meta-paths via join
operations spanning multiple tables, and can apply filters relevant
to the task (e.g., time windows or attribute conditions), all within
the database engine. In essence, we shift the graph construction
logic into the query layer, ensuring that the GNN only receives the
most pertinent neighbor information for learning.

2.2.4 HeteroGraphSAGE. Our work uses a technique called
HeteroGraphSAGE, introduced in [24] (implementation available
at [12]), which is a lightweight schema-aware GNN model. In
essence, HeteroGraphSAGE generalizes GraphSAGE to heteroge-
neous graphs by defining separate weights for each edge type and
aggregating messages from each relationship independently, much

like HinSAGE [6]. Formally, let hz(,l) be the embedding of node v at
layer [ of the GNN, and let R be the set of relationship types in the
graph (each relationship r € R connects source nodes of a certain
type to target nodes of a certain type). We denote by N, (v) the
set of neighbors of node v via relationship r. A HeteroGraphSAGE
layer updates node v as follows. For each relationship r incident on
v, we aggregate the messages from v’s r-neighbors (e.g., by taking
the mean of their embeddings from the previous GNN layer, i.e.,
layer I — 1) and apply a relationship-specific linear transformation
followed by a nonlinear activation function (e.g., ReLU).

This HeteroGraphSAGE module is well-suited for relational data,
especially when paired with our SQL-defined neighbor sampling.
First, it is inherently schema-aware as it maintains separate pa-
rameters for each relationship, so the model can learn the relative
importance and distinct patterns of each edge type (unlike a homo-
geneous GNN that would mix the parameters together). Second, it
offers flexibility in leveraging domain knowledge — one can easily in-
clude or exclude certain relationships or apply custom filters simply
by changing the SQL neighbor query, without altering the model ar-
chitecture. In effect, HeteroGraphSAGE acts as a general inductive
learning engine that can take any subset of the relational graph as
input. Third, it remains efficient and relatively simple. Compared to
advanced architectures like GTN or HetGNN (which add extra lay-
ers for learning attention or content encoders), HeteroGraphSAGE
has a straightforward feed-forward update and fewer trainable
components. This simplicity means faster training and easier opti-
mization, while still capturing heterogeneity through its separate
relationship-specific weights. Finally, HeteroGraphSAGE is built
on the inductive GraphSAGE framework [5], so it can naturally
handle new nodes or dynamically evolving graphs, a crucial prop-
erty for many relational databases where new nodes in the graph
(customers, orders, products, etc.) arrive over time.

In summary, by combining HeteroGraphSAGE with SQL-based
neighbor sampling, our framework takes advantage of the rela-
tional schema to focus the GNN on the most relevant connections,
without incurring the overhead of more complex techniques. This
approach strikes a desirable balance as it uses schema information
to guide message passing while avoiding manual meta-path engi-
neering and keeping the model tractable. For these reasons, we
adopt HeteroGraphSAGE as the backbone GNN in our proposed
framework, enabling effective relational deep learning on heteroge-
neous graphs derived from standard relational databases.



2.3 The RelBench Relational Deep Learning
Benchmark

The recently introduced RelBench benchmark [24] provides a suite
of realistic multi-table databases and associated prediction tasks
to be performed using RDL. RelBench includes an e-commerce
relational dataset called rel-amazon, derived from Amazon’s book
review data. We use this dataset and the associated prediction tasks
as examples and for the experiments in this paper. As shown in
Figure 1, this database consists of three tables connected by foreign-
key relationships (customer, product, and review) with over
24 million rows in total. The tables include rich information such
as product attributes (e.g., category and price) and review
details (e.g., rating and timestamp).

RelBench defines prediction tasks on rel-amazon at the cus-
tomer and item level. For example, the user lifetime value prediction
task (user-1tv) requires forecasting the future monetary value of
a customer’s purchases based on their reviewing activities before
a certain timestamp. That is, the training data consists of all the
reviews and the associated products and customers prior to the
timestamp, and the prediction variable is the total price of all prod-
ucts reviewed by a given customer in the subsequent three months.
The item lifetime value prediction task (item-1tv) is defined anal-
ogously: predict the total dollar value of purchases a given item
receives in the next three months, using all available data before the
timestamp. RelBench also includes user-churn and item-churn
tasks, which involve predicting whether a customer or product will
become inactive (i.e., receive no reviews) in the next three months.

customer

customer_id numerical

customer_name text]

review

review_text text
summary text
review_time timestam .
— - P product_id numerical
ratin 1 ical
9 pumerica brand text
verified categorical -
categoric title text
customer_id numerical L
description text
product_id numerical .
price numericall
category varchar

Figure 1: Schema of the rel-amazon database

3 SQL-BASED RELATIONAL DEEP LEARNING

The RDL approach of representing a relational database as a het-
erogeneous graph and using GNNs on this graph is undoubtedly
powerful and promising. However, this conceptual approach does
not necessitate exporting the relational database from the DBMS
to a system like PyTorch as a graph and ignoring the power of SQL
and relational database systems. In this paper, we propose doing
much of the work required for RDL training and inference in
SOL and using the full power of the DBMS. We described the
advantages of this approach in Section 1, and here we elaborate

on specific ways that SQL and a DBMS can be used. In particular,
we discuss (1) using SQL for sampling the training data, (2) doing
RDL on an entirely virtual graph, and (3) moving part of the GNN
training inside the DBMS. Among these, (1) is implemented in our
system, as detailed in Section 4, while (2) and (3) are proposed as
future research directions. We do not claim that this is a comprehen-
sive list of possibilities, but rather specific suggestions for exploring
this novel and promising research area.

3.1 SQL Sampling to Create Training Data

The RDL approach lets GNNs exploit the rich relational structure
of multi-table data instead of flattening everything into one table.
However, a major challenge in this setting is to generate the training
data for the GNN. GNNs are trained on subgraphs sampled from the
input graph. There is a node of interest, for example, the customer
node in the user-1tv task, where the goal is to predict the lifetime
value of a customer. This node is included in the training subgraph,
as well as a sample of its one-hop neighbors, two-hop neighbors,
and so on up to k-hop neighbors. The value of k is typically small,
for example, k = 2. One such subgraph is created for each node
of interest in the training data, and these subgraphs are used in
minibatches to train the GNN.

Traditional GNN training pipelines, for example, using PyTorch
Geometric (PyG) [11] or DGL [27], perform neighborhood sampling
in Python from a graph stored in memory or on disk. In the RDL
setting, one must extract the entire graph (i.e., all relevant rows as
nodes and key-foreign key links as edges) to files or memory, then
use Python to create the training subgraphs by starting from the
node of interest and randomly sampling neighbors [20]. For exam-
ple, GraphSAGE-style sampling selects a few random neighbors
per node at each GNN layer to limit the “neighborhood explosion”
in large graphs. In this scenario, SQL is likely used to extract the
graph from the DBMS, but sampling and training happen entirely
outside the DBMS. While effective for scalability [3], this conven-
tional approach is agnostic to the database schema and ignores
any domain-specific information, treating the graph as a generic
heterogeneous graph [20]. Sampling the subgraphs for training is
done outside the DBMS, so it does not take advantage of the DBMS
query processing capabilities. Furthermore, the sampling cannot
be tailored to schema-derived constraints.

The most basic way to use SQL in RDL is to sample the subgraphs
for training the GNN using SQL. The logic for creating each sub-
graph is expressed as a SQL query (or a sequence of queries) that
runs efficiently in the DBMS. Edge traversals are easily expressed
as foreign-key joins, and so are meta-paths that traverse multiple
edges. Additional processing on the data when creating the sub-
graph, such as filtering or aggregation, can also be specified in the
SQL query. Under this scheme, the tables in the database still have
to be exported as a graph that is read by a system like PyTorch and
used for GNN training. SQL is used for sampling the subgraphs
used for training, but other aspects of GNN training, such as mes-
sage passing between neighbors, loss minimization, and updating
weights, all have to be done in PyTorch or a similar system. These
activities require access to the graph.

Next, we elaborate on the benefits of using SQL for sampling.



Schema-Aware Sampling: The database schema encodes semantic
information that can be very useful in improving the usefulness of
the sampled subgraphs for GNN training. Because following foreign-
keys is expressed declaratively as joins in a SQL query, one can
naturally extend this SQL query to express domain-specific neigh-
bor selections. For instance, one can sample not just any random
neighbors but neighbors that follow a specific meta-path known to
be relevant for the prediction task [18]. This is known to greatly
improve accuracy in heterogeneous graphs. Prior work on hetero-
geneous GNNis often defines meta-paths or relation types to guide
message passing (e.g., R-GCN for multi-relational graphs [7, 25, 30]
or HAN which attends over meta-path neighbors [28]). With SQL,
these meta-paths become simple join queries that retrieve the de-
sired neighbor set declaratively, without writing custom code to
traverse a graph. This declarative approach makes it easy to incor-
porate rich semantic context by simply adding filtering conditions
(and potentially extra joins) to the WHERE clause of the SQL query.
Sampled neighbors can be constrained to those matching specific
patterns or attributes (e.g., “reviews of electronics products by users
who also reviewed gardening products”). We show examples of
these queries later in the paper.

Temporal and Constraint-Based Sampling: Real-world rela-
tional data often requires sampling strategies that respect both
temporal and constraint-based conditions to construct meaning-
ful subgraphs GNN training. Temporal sampling ensures causality
by preventing future data from leaking into training, for exam-
ple, adding WHERE review_date < prediction_date in a SQL
query can guarantee that only past interactions are considered
when predicting future outcomes. However, constraint-based sam-
pling provides a more general and often more impactful mechanism
by allowing subgraph selection based on arbitrary attributes such
as user locale, product category, or rating value. SQL excels at
this by enabling expressive and efficient filters like user_locale
= 'en-US’ or rating_value >= 4, which would otherwise re-
quire verbose, hard-coded logic in Python-based samplers. These
constraints can reflect domain knowledge, enforce fairness, or tailor
samples to specific tasks, making the sampling process not only
more flexible but also more interpretable. By combining temporal
awareness with rich, declarative constraint handling, SQL-based
sampling offers a much more powerful and scalable alternative to
traditional GNN APIs.

Leveraging Decades of Optimization: Relational database sys-
tems implement optimizations that are backed by decades of re-
search into storage, indexing, and query processing. By formulating
subgraph sampling as SQL queries, we automatically tap into these
optimizations. The DBMS query optimizer will choose efficient join
orders, use indexes to speed up link traversal, and push down pred-
icates (filters) to minimize I/O. In practice, even complex multi-hop
graph traversals translate to multi-table joins that can be executed
efficiently at scale by modern database systems. Pushing sampling
into SQL also means minimal data movement. Instead of transfer-
ring entire adjacency lists to Python, the database can send back
just the sampled subgraph (often orders of magnitude smaller).
Recent work on graph databases and GNNs confirms that using
the query engine for neighbor retrieval can significantly reduce
memory overhead and speed up training [20].

In summary, SQL-based sampling for GNNs on relational data
enables schema-aware, constraint-aware neighborhood selection
and taps into the power of database engines for efficiency and
scalability. This approach bridges the two worlds of database sys-
tems and machine learning, which has always been recognized as
a promising direction [14]. Several works have begun to explore
this synergy by integrating GNN training with graph databases
and introducing new frameworks for relational GNNs that respect
database structure [20]. Our approach contributes to this emerging
area by proposing to use vanilla SQL (on systems like DuckDB
or PostgreSQL) as the interface for graph sampling. In the next
subsection, we illustrate concretely how one can express common
graph neighborhood sampling patterns as SQL queries.

3.1.1 SQL-Driven Neighborhood Sampling Examples. Consider the
rel-amazon database of the RelBench benchmark [24]. This data-
base has three tables: Customer, Review, and Product. In the
user-1ltv task, which is a node regression task, we want to sam-
ple subgraphs around a particular customer since we are trying
to learn customer node embeddings to predict the total value of a
customer’s future purchases. From the schema in Figure 1, we see
that the one-hop neighbors of a customer are all the reviews by
this customer. We can use the query shown in Listing 1 to sample a
random subset of these neighbors. The query uses a parameterized
neighbor count (max_hop1l) and respects a timestamp cutoff (only
reviews before a given prediction date). This SQL query finds up to
max_hop1 reviews written by a given customer (seed_customer)
before a specified cutoff date. The ORDER BY RANDOM() LIMIT
:max_hop1 clause implements uniform random sampling of the
customer’s reviews. In a standard GNN library, this corresponds to
selecting a random subset of the customer’s one-hop neighbors in
the review nodes. By expressing sampling in SQL, we can easily
modify the WHERE clause to impose other constraints — for exam-
ple, we can add AND r.rating >= 4 if we only want to sample
the customer’s positive experiences.

SELECT r.review_id, r.product_id
FROM Review AS r
WHERE r.customer_id = :seed_customer_id
AND r.review_timestamp < :cutoff_timestamp
ORDER BY RANDOM()
LIMIT :max_hopl;

Listing 1: One-hop randomized neighborhood sampling for
the customer-1tv task (customer—review)

Next, we show how to extend the one-hop Customer-Review
sampling query to sample an entire three-hop subgraph around the
seed customer in a single SQL query. One way to capture a three-
hop neighborhood around the seed customer in one SQL query is
to leverage Common Table Expressions (CTEs). The SQL query for
three-hop sampling is shown in Listing 2 and works as follows:

e Hop 1(Customer— Review): Select a random sample (up
to max_hop1 rows) of reviews written by the seed customer
(customer_id = :seed_customer_id)before agiven cut-
off timestamp (cutoff). These are the seed customer’s own
reviews (one-hop neighbors of the seed customer).

e Hop 2 (Review—Product): From the Hop 1 results, col-
lect the unique product IDs of those reviews. This yields the




set of products that the seed customer has reviewed. Given
the schema of rel-amazon, each review always points to
only one product, so max_hop2 = 1 in this example.

e Hop 3 (Product—Review): For each product from Hop 2,
retrieve other customers’ reviews of that product (excluding
the seed customer’s own review) from before the cutoff. We
sample up to max_hop3 of these peer reviews per product,
capturing the experiences of other users on the same items.

WITH
hopl AS (
SELECT review_id, product_id
FROM reviews AS r
WHERE r.customer_id = :seed_customer_id
AND r.review_timestamp < :cutoff_timestamp
ORDER BY random()
LIMIT :max_hopl
Do
hop2 AS (
SELECT DISTINCT product_id
FROM hop1l
Do
hop3 AS (
SELECT r2.review_id
FROM reviews AS r2
JOIN hop2 AS h2
ON r2.product_id = h2.product_id
WHERE r2.customer_id != :seed_customer_id
AND r2.review_timestamp < :cutoff_timestamp
ORDER BY random()
LIMIT :max_hop3
)
SELECT review_id, product_id FROM hopl
UNION
SELECT NULL, product_id FROM hop2
UNION
SELECT review_id, NULL FROM hop3;

Listing 2: Three-hop neighbor sampling query using SQL
CTEs (customer—review— product—review).

In our SQL query, each CTE builds on the previous one: hopl
yields the seed’s review IDs and products; hop2 uses those results to
get distinct products; hop3 then finds other reviews for those prod-
ucts. The final SELECT combines these results, as shown in Listing 2
(NULL is used to fill in missing values so that the outputs from hop1,
hop2, and hop3 all have the same columns and can be combined us-
ing UNION). By chaining these hops, the query constructs a focused
three-hop subgraph centered on the seed customer. Notably, the
inclusion of the third hop (other reviews of the products) provides
richer relational context beyond the seed customer’s immediate
actions. The seed customer becomes indirectly connected to peer
customers who reviewed the same products via the peer customer’s
reviews of these shared products. In terms of GNN message pass-
ing, this means information can flow from those other customers’
reviews through the product nodes back to the seed customer. Such
connectivity greatly enriches the seed node’s neighborhood with
task-relevant signals, for example, capturing community opinions
or product popularity. This can enhance the learned representa-
tion for predicting a customer’s lifetime value. Figure 2 illustrates

3
N

o

®
/

Figure 2: Three-hop neighborhood of a seed customer node.
C represents the customer node, R represents review nodes,
and P represents product nodes.

this three-hop structure, helping illustrate how the neighborhood
is expanded across relational links. In summary, this single SQL
query efficiently captures a three-hop neighborhood that encodes
a meaningful relational structure. In a straightforward way, this
query extends the one-hop sampling approach to a subgraph that
supports more expressive GNN-based modeling.

3.2 Representing the Database as a Virtual
Graph

Using SQL for subgraph sampling helps improve GNN training in
RDL, but does not eliminate the need for materializing the graph
representing the relational database. The next step in SQL-based
and DBMS-powered RDL is to eliminate this graph. Conceptually,
RDL would still think of the database in terms of a graph, but this
graph can be a purely virtual construct.

The GNN training would still happen in a machine learning sys-
tem like PyTorch, but PyTorch would work on data structures that
are created and managed by the DBMS, leveraging as much as pos-
sible the bulk processing capabilities of the DBMS. This approach
would reduce data movement between the DBMS and Python, since
the graph representing the database would be virtual. Making the
graph virtual requires careful design choices and careful engineer-
ing. The information needed in GNN training, such as node ids,
graph connectivity, and neural network weights and biases, must
be carefully split between the DBMS and Python and orchestrated
to ensure correctness and efficiency. Since the graph is virtual, it
may be necessary to implement some of the GNN training opera-
tions without using a graph-aware library such as PyG, but such a
decision is part of the research and engineering required to achieve
the goal of GNN training on a virtual graph.

3.3 GNN Training in the DBMS

Beyond SQL-based sampling and GNN training on a virtual graph,
it should be possible to improve RDL by pulling part of the GNN



training inside the DBMS. Training ML models inside the DBMS
has always been a topic of interest for the database community [14],
and RDL offers an opportunity to re-explore this possibility.

For example, the GNN message-passing operation is a neural
realization of a SQL join and group-by aggregation query [10]. It is
possible that implementing message passing as a SQL query in a
DBMS would benefit from the bulk processing capability it offers.
It is also possible to incorporate other ideas developed specifically
for machine learning systems [2]. It is also worth noting that oper-
ations such as tensor operations on GPUs will likely always be best
performed by a system like PyTorch. Exploring this design space
with rich tradeoffs offers many research challenges, but can lead to
substantial gains in expressiveness, scalability, and efficiency.

4 THE SQL-GNN SYSTEM

In order to realize the vision presented in this paper, we are imple-
menting a system that we call SQL-GNN. This section describes
our current effort in implementing this system.

4.1 Training Pipeline Implementation

Our training pipeline is based on the RelBench benchmark imple-
mentation [12], which defines a suite of relational learning tasks
along with their corresponding training, validation, and test splits.
It includes implementations of heterogeneous GNN models such
as HeteroGraphSAGE, and is tightly integrated with PyG, enabling
the use of high-performance data loaders for GNN training. Impor-
tantly, RelBench allows for customizable neighborhood sampling
strategies along with providing easy integrations for native PyG
samplers. We extend this flexibility by incorporating DuckDB—an
in-process, high-performance analytical SQL engine [23]—to ex-
press neighbor sampling logic declaratively in SQL. This combi-
nation of RelBench, PyG, and DuckDB allows us to express and
execute relational graph sampling logic in SQL while maintaining
compatibility with the PyG training workflow. Our current pipeline
(illustrated in Figure 3) focuses on integrating an SQL-based sub-
graph sampler directly into the GNN training loop. This design
enables declarative, schema-aware neighbor sampling via SQL, in
place of the typical hand-coded Python sampling routines that come
with the PyG library. The pipeline consists of the following steps:

(1) Relational Data Storage: We begin with normalized re-
lational tables (e.g., Customer, Review, Product in the
rel-amazon dataset) where each table represents a distinct
entity type, and foreign-key columns define relationships
between these entities in the database schema.

(2) Global Graph Construction: Using the RelBench imple-
mentation of Global Graph Construction, we transform
relational tables and their schema into a heterogeneous
graph in memory. Each row in each table becomes a node
of the corresponding type, and edges are created for every
foreign key reference, linking a row with its referenced row.
This yields a graph structure that mirrors the relational
links. For each node, a feature vector is derived from its
row attributes, combining numeric features, learned em-
beddings for categorical fields, and vector representations
of any textual fields using PyTorch Frame [17]. This global
graph (all nodes, features, and edges) is maintained entirely

in-memory for fast access during training. While this mate-
rialization facilitates on-the-fly retrieval of subgraph node
features during training, it is not conceptually necessary;
the global graph is materialized solely to simplify imple-
mentation.

(3) SQL-Based Neighbor Sampling: During training, instead
of relying on a Python-based neighbor sampler (e.g., Graph-
SAGE style sampling), we leverage the embedded DuckDB
SQL engine to perform on-the-fly subgraph sampling. At
each iteration, the PyG training loop provides a mini-batch
of seed node IDs (for instance, a set of Customer node IDs
for a prediction task). These seed IDs are passed as pa-
rameters to a pre-defined SQL query executed by DuckDB
running in-process, in-memory. The SQL query encodes
the neighbor sampling logic, a multi-hop expansion of the
seed nodes to their neighbors via joins along foreign-key
relationships. For example, the query can join a batch of
Customers to their related Reviews, then join to Products,
thereby retrieving all neighbor nodes and edges within a
certain hop radius. We can easily incorporate sampling
constraints or filters in SQL (e.g., limiting the number of
neighbors per node or applying WHERE clauses to enforce
application-specific criteria), and we show in the next sec-
tion that this improves training speed and accuracy.

(4) Subgraph Retrieval: The SQL query returns the identifiers
of the nodes and edges that form the sampled subgraph for
the current batch. With these results, the system gathers
the required node features and connectivity information
from the global in-memory graph. Because the full graph’s
adjacency lists and feature vectors reside in memory, this
lookup is fast and avoids any disk I/O. The query output
identifies the subgraph’s nodes and edges, while the in-
memory graph provides their features and linkage.

(5) HeteroData Subgraph Assembly: Next, we package the
sampled mini-batch subgraph into a HeteroData object
from PyG, which is PyG’s native data container for hetero-
geneous graphs. It organizes the subgraph’s nodes by type
(each with their feature vector) and edges by relation type
(with corresponding edge index lists). The HeteroData rep-
resentation is directly compatible with heterogeneous GNN
models in PyG and mostly importantly compatible with
training the HeteroGraphSage GNN which is the back-
bone model we train.

(6) GNN Forward Pass and Training Loop: The assembled
subgraph is then fed into our GNN model, which in our im-
plementation is an n-layer HeteroGraphSAGE. The model
performs a forward pass on this mini-batch, aggregating
messages across the sampled neighborhood hops, and com-
putes the training loss. We then apply back-propagation to
compute gradients and update the model parameters. This
entire process (Steps 3—6) repeats for each batch of seed
nodes, cycling through the training data until convergence.

By integrating the SQL engine directly into the training pipeline,
SQL-GNN replaces traditional in-memory neighbor sampling with
declarative SQL queries executed within DuckDB, which improves
the flexibility, accuracy, and running time of RDL.



]

|

|

1. Transformed once before training |
starts : Sampling

|

1

2. The training loop integrated with SQL

Pass
complete Calculate loss
Transform the DB
. / —— and do
into a graph .
Global Graph GNN for HeteroGraphSAGE Backpropagation

In-Memory

training

Query result

Pass seed o

used to fetch S ' ‘ﬂ

SQL nodes to \'ﬁ'

subgraph node execute & y
features and DuckDB SQL ¢ X

Engine running sampling

edge the SQL query query
connectivity

PyTorch Geometric
Training Loop

Relational
Tables

Figure 3: Overview of our training pipeline.

14.8 5.2 Task Specific Subgraph Formation

—s=— Random 4hop Sampling
—— SQl-based 3hop Sampling Using the user-1tv task (recall that the goal of this task is to predict
the value of a customer’s future purchases) we demonstrate one of
the key benefits of SQL-based sampling which is its simplicity in
defining task-specific subgraphs around seed nodes. We evaluate
two subgraph sampling strategies: (1) a standard GraphSAGE-based
random sampling approach, and (2) a SQL-based neighborhood
extraction (Listing 2).

For the first approach, we employ a uniform neighbor sampling
strategy to construct mini-batch subgraphs. In particular, we sam-
ple 4-hop neighborhoods around each seed customer node, with
a fanout of 64 neighbors at each hop. To maintain temporal con-
sistency, we impose a uniform temporal sampling constraint: at
each hop, neighbors are chosen uniformly at random from those
whose timestamps precede the seed customer’s own interactions.
The resulting sampled subgraph extends the structure illustrated in
5 EXPERIMENTS Figure 2 by one additional layer: every review node at the third hop
5.1 Experimental Setup is connected to the customer who authored it, introducing a fourth-
hop customer node. We hypothesize that these distant fourth-hop
customer nodes provide a signal for the LTV prediction task of only
limited usefulness. In the rel-amazon dataset, each customer node
has only one attribute, the customer’s name. Since the name of
one customer is not informative for predicting the LTV of another
customer, connecting a seed customer to other customers four hops
away via shared products and reviews may introduce more noise
than information, once closer three-hop neighbors are considered.

To capture more task-relevant context, we formulated an alter-
native subgraph sampling method using an SQL-based three-hop
query (Listing 2). This declarative approach explicitly follows the
relational schema and focuses on semantically meaningful connec-
tions: starting from a seed customer, it retrieves that customer’s
own reviews (hop1) and the products of those reviews (hop2), then
finds other reviews of those same products (hop3). Notably, this
query intentionally skips the extra fourth-hop customer nodes,

= =
> >
& o

—
»
[N

Training Loss

14.0

0 5 10 15 20 25 30
Epoch

Figure 4: Training loss for user-1tv

All experiments were conducted on a high-performance Linux
server running Ubuntu 22.04. The machine is powered by an AMD
EPYC 9554 processor with 64 physical cores and 128 threads and
has 768GB of RAM. The server is equipped with four NVIDIA L40S
GPUs, each providing 46 GB of VRAM. This setup offers substantial
computational capacity to support efficient training of large-scale
graph neural networks. We adopt a 4-layer HeteroGraphSAGE ar-
chitecture (Section 2) using sum aggregation at each layer. All mod-
els are trained for 30 epochs with a batch size of 128 and a learning
rate of 0.005. These hyperparameters remain constant across all
experiments to ensure consistency and enable a fair comparison
between different sampling strategies and model configurations.
The experiments in this section are meant to provide examples
that demonstrate the benefits of SQL-based sampling. For all the ex-
periments, we use the node regression and node classification tasks
from the rel-amazon dataset of the RelBench benchmark [24].



thereby limiting the neighborhood to information more directly
tied to the seed customer’s behavior. The SQL sampling configura-
tion bounds the neighborhood size, with up to 128 direct reviews of
the seed customer (max_hop1 = 128) and up to 256 other product
reviews (max_hop3 = 256); the hop2 fanout is inherently 1, since
each review is associated with exactly one product in the schema.

Empirically, the model trained on subgraphs extracted by the SQL
query converged faster and achieved better predictive performance
than the model using standard GraphSAGE neighbor sampling. As
shown in Figure 4, the loss curve for the SQL-based model decreases
more rapidly, indicating faster convergence during training. This
suggests that the three-hop neighborhood constructed using SQL-
based sampling offers a more focused and useful relational signal,
enabling the model to learn useful representations more efficiently.
The validation and test Mean Absolute Error (MAE) are shown in
Table 1, and they demonstrate that the superiority of SQL-based
sampling is evident not only in the training loss, but also in the
overall validation and test accuracy measures.

We also evaluate the SQL-based subgraph approach on the
user-churn prediction task, which is a node classification prob-
lem. We use the same three-hop SQL query from Listing 2 to define
subgraphs around each customer node, as both the user-ltv and
user-churn tasks depend on learning high-quality embeddings for
customer nodes. This method achieves a validation AUCROC of
70.777 and a test AUCROC of 70.938, which is similar to recent
state-of-the-art work [4]. This experiment shows that the SQL-
based sampling query has strong predictive performance for tasks
involving customers and can be reused for multiple tasks.

Note that it is possible to implement the same sampling logic
used for the SQL-based sampling in a Python-based sampler. How-
ever, the benefits of SQL-based sampling are simplicity in express-
ing complex sampling logic and efficiency in query execution. We
explore more complex sampling logic next.

Subgraph Formed Using Validation MAE  Test MAE
Listing 2 (three-hop) 11.797 13.884
Random four-hop sampling 11.963 14.130

Table 1: Accuracy for user-1tv.

5.3 Filtering Irrelevant Nodes

We consider the item-1tv and item-churn prediction tasks of the
rel-amazon dataset, which are a node regression and a node classi-
fication task, respectively. Learning high-quality item embeddings
is critical for these tasks.

Building on the results in the previous section, we compose a
SQL query to perform three-hop neighborhood expansion, starting
from a seed product (i.e., item) node. Listing 3 shows this query,
which uses a CTE for each hop. Starting from a product ID, the
query selects a random sample of reviews for that item (hop1);
it then finds the customers who authored those reviews (hop2);
finally, it retrieves other reviews written by those customers (hop3).
We retrieve a random sample of up to 256 reviews associated with
the seed product, along with the customer IDs of the reviewers
(i.e., max_hop1 = 256). Given the relational schema, each review is
written by exactly one customer, so hop2 will contain at most 256

Figure 5: Filtering the third hop of a product node subgraph.
P represents product nodes, R represents review nodes, and
C represents customer nodes.

distinct customers, one per review. In hop3, we join those customers
with the reviews table again to fetch up to 128 additional reviews
authored by the same customers (i.e., max_hop3 = 128), completing
the three-hop traversal.

WITH
hopl AS (
SELECT review_id, customer_id
FROM reviews AS r
WHERE r.product_id = :seed_product_id
AND r.review_timestamp < :cutoff_timestamp
ORDER BY random()
LIMIT :max_hopl
Do
hop2 AS (
SELECT DISTINCT customer_id
FROM hopl
Do
hop3 AS (
SELECT r2.review_id
FROM reviews AS r2
JOIN hop2 AS h2
ON r2.customer_id = h2.customer_id
WHERE r2.product_id != :seed_product_id
AND r2.review_timestamp < :cutoff_timestamp
ORDER BY random()
LIMIT :max_hop3
)
SELECT review_id, customer_id FROM hopl
UNION
SELECT NULL, customer_id FROM hop2
UNION
SELECT review_id, NULL FROM hop3;

Listing 3: Three-hop neighbor sampling SQL query for
product—review— customer—review.

We use the subgraphs sampled by this query in both the item-1tv
and item-churn tasks. The results are shown in Table 2, in the first




Validation

Average Reviews in

Average Reviews in ~ Average Epoch Time

Task Query Metric Test Metric third hop (training) third hop (validation) (training + validation)
item-ltv Listing 3 37.331 43.244 81238.72 145937.84 1.90 hours
item-ltv Listing 4 38.006 44.167 19967.56 39256.44 1.00 hour
item-churn Listing 3 82.571 83.085 81238.72 145937.84 2.97 hours
item-churn Listing 4 82.516 82.9767 19967.56 39256.44 1.14 hours

Table 2: Results with and without filtering reviews in the third hop.

and third row, respectively. The third and fourth columns of the
table show the validation and test accuracy. The accuracy metric
for item-1tv is MAE and the accuracy metric for item-churn is
AUCROC. The accuracy results in these rows are comparable to
(slightly better than) recent work [4] showing that our SQL-based
sampling is effective, achieving state-of-the-art performance, and
can be reused for multiple tasks on the same data.

hop3 AS (
SELECT r2.review_id
FROM reviews r2
JOIN hop2 h2 ON r2.customer_id = h2.customer_id
JOIN products p2 ON p2.product_id = r2.product_id
WHERE r2.product_id <> :seed_product_id
AND r2.review_timestamp < :cutoff_timestamp
AND p2.price BETWEEN
0.9 x (SELECT price FROM products
WHERE product_id = :seed_product_id)
AND 1.1 * (SELECT price FROM products
WHERE product_id = :seed_product_id)
ORDER BY random()
LIMIT :max_hop3

Listing 4: Third-hop sampling with price-range filter.

However, the main point we want to illustrate in this experiment
is that it is possible to optimize the training pipeline by adjusting
the subgraph sampling using domain-specific knowledge. In partic-
ular, we can use domain-specific knowledge to remove less relevant
nodes from the sampled subgraphs. For this experiment, we posit
that focusing on reviews of similar products to the seed product
will improve training speed without affecting accuracy. We define a
similar product as one whose price is between 90% and 110% of the
seed product’s price. In the third hop, when we sample additional
reviews of customers who reviewed the seed product, we filter out
reviews of products that are not similar to the seed product accord-
ing to our definition, thereby applying domain-specific constraints
to remove less relevant nodes from the sampled subgraph.

Figure 5 shows how we perform neighborhood filtering at the
third hop: The seed product (P, blue) connects to first-hop review
nodes (R, yellow), which in turn link to second-hop customer nodes
(C, green). Third-hop review nodes (R, yellow) represent reviews
that those customers wrote for other products (P, blue). Our filtering
strategy prunes away any third-hop review whose associated prod-
uct (P, gray) falls outside a £10% price range of the seed product. In
the figure, the crossed-out red circles highlight pruned third-hop
review nodes.

This filtering constraint is very simple to implement, demon-
strating the power of SQL-based sampling. We extend the hop3 part
of the SQL query to join each third-hop review with its product

information and apply a price filter in the WHERE clause, as shown
in Listing 4 (only the hop3 part of the query is shown for brevity,
and the added parts are highlighted). This concise modification
prunes a substantial portion of the third-hop neighborhood.

Table 2 shows the results of using the query in Listing 4 that
filters irrelevant nodes in the second and fourth rows. The third and
fourth columns show that filtering irrelevant nodes has a minor
effect on accuracy; the accuracy metrics on the test data degrade
by a very small amount. The fifth, sixth, and seventh columns of
the table show the substantial savings in training data volume and
training time due to filtering irrelevant nodes. The fifth and sixth
columns show that the average number of third-hop reviews in the
training and validation splits of rel-amazon drops by 75% and 73%,
respectively, meaning the third-hop neighborhood is only about
one-quarter its original size. This aggressive pruning translates to
significantly faster epoch runtimes, as shown in the final column
of the table. Adding the price-range filter yields approximately 2x
speedup without harming model accuracy.

6 CONCLUSION AND FUTURE RESEARCH

This paper introduces a vision for Relational Deep Learning in
which a portion of the work to train the GNNs used in RDL is
done in SQL and inside the DBMS. This has advantages in terms of
expressiveness, flexibility, and speed. We presented initial results
from the SQL-GNN system, showing that using SQL queries to
sample the subgraphs for GNN training provides a simple, powerful,
and flexible way to improve model accuracy and training speed.

Future work includes optimizing these SQL queries to ensure
that they are expressed in the simplest possible form, combining
the queries to use the power of DBMS query processing for bulk
sampling, and adding awareness of these queries to the query op-
timizer to improve the execution plans it selects for them. In this
paper, we decided the optimizations to include in the SQL queries
used for sampling manually, using our domain knowledge. An im-
portant direction for future research is automatically choosing the
best subgraphs for a given database and task, leveraging the full
power of SQL, including grouping and aggregation. Beyond SQL
for subgraph sampling, an open question is whether the graph
representing the relational database can be made entirely virtual.
This is doable in principle, but it remains to be seen if the required
research and engineering efforts justify the expected savings in run-
ning time and data movement. Ultimately, it would be interesting
to investigate how much of the GNN training can be done inside
the DBMS, using SQL, existing query processing operations, and
possibly new specialized query processing operations.



REFERENCES

(1]

&

=

[10

[11

[12

[13]

[14]

[15]

[16]

[17]

[18]

[19

[20]

[21

[22]

[23]

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. {TensorFlow}: a system for {Large-Scale} machine learning. In 12th
USENIX symposium on operating systems design and implementation (OSDI 16).
265-283.

Matthias Boehm, Iulian Antonov, Sebastian Baunsgaard, Mark Dokter, Robert
Ginthor, Kevin Innerebner, Florijan Klezin, Stefanie N. Lindstaedt, Arnab Phani,
Benjamin Rath, Berthold Reinwald, Shafaq Siddiqui, and Sebastian Benjamin
Wrede. 2020. SystemDS: A Declarative Machine Learning System for the End-to-
End Data Science Lifecycle. In Proc. Conf. on Innovative Data Systems Research
(CIDR).

Aydin Bulug, Jeremy T Fineman, Matteo Frigo, John R Gilbert, and Charles E
Leiserson. 2009. Parallel sparse matrix-vector and matrix-transpose-vector mul-
tiplication using compressed sparse blocks. In Proceedings of the twenty-first
annual symposium on Parallelism in algorithms and architectures. 233-244.
Tianlang Chen, Charilaos Kanatsoulis, and Jure Leskovec. 2025. RelGNN:
Composite Message Passing for Relational Deep Learning. arXiv preprint
arXiv:2502.06784 (2025).

Ha Na Cho, Imjin Ahn, Hansle Gwon, Hee Jun Kang, Yunha Kim, Hyeram Seo,
Heejung Choi, Minkyoung Kim, Jiye Han, Gaeun Kee, et al. 2022. Heterogeneous
graph construction and HinSAGE learning from electronic medical records.
Scientific Reports 12, 1 (2022), 21152.

CSIRO Data61. 2020. Heterogeneous GraphSAGE (HinSAGE) — StellarGraph v1.2.1
documentation. https://stellargraph.readthedocs.io/en/stable/hinsage.html
Milan Cvitkovic. 2020. Supervised learning on relational databases with graph
neural networks. arXiv preprint arXiv:2002.02046 (2020).

Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable representation learning for heterogeneous networks. In Proceedings of
the 23rd ACM SIGKDD international conference on knowledge discovery and data
mining. 135-144.

Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are we
really making much progress? A worrying analysis of recent neural recommen-
dation approaches. In Proceedings of the 13th ACM conference on recommender
systems. 101-109.

Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan,
Joshua Robinson, Rex Ying, Jiaxuan You, and Jure Leskovec. 2023. Relational
deep learning: Graph representation learning on relational databases. arXiv
preprint arXiv:2312.04615 (2023).

Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning
with PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).

Stanford SNAP Group. 2023. relbench. https://github.com/snap-stanford/
relbench. Accessed: 2025-05-25.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

Joseph M. Hellerstein, Christopher Ré, Florian Schoppmann, Daisy Zhe Wang,
Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng,
Kun Li, and Arun Kumar. 2012. The MADIib Analytics Library or MAD Skills,
the SQL. Proc. VLDB Endow. 5, 12 (2012), 1700-1711.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure
Leskovec. 2021. Ogb-Isc: A large-scale challenge for machine learning on graphs.
arXiv preprint arXiv:2103.09430 (2021).

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118-22133

Weihua Hu, Yiwen Yuan, Zecheng Zhang, Akihiro Nitta, Kaidi Cao, Vid Kocijan,
Jinu Sunil, Jure Leskovec, and Matthias Fey. 2024. Pytorch frame: A modular
framework for multi-modal tabular learning. arXiv preprint arXiv:2404.00776
(2024).

Ao Liu, Jing Chen, Ruiying Du, Cong Wu, Yebo Feng, Teng Li, and Jianfeng Ma.
2024. HETEROSAMPLE: Meta-path Guided Sampling for Heterogeneous Graph
Representation Learning. IEEE Internet of Things Journal (2024).

Xiao Liu, Lijun Zhang, and Hui Guan. 2022. Uplifting message passing neural
network with graph original information. arXiv preprint arXiv:2210.05382 (2022).
Dmytro Lopushanskyy and Borun Shi. 2024. Graph Neural Networks on Graph
Databases. arXiv preprint arXiv:2411.11375 (2024).

Federico Lopez Jure Leskovec Matthias Fey, Vid Kocijan. 2025. Introducing
KumoRFM: A Foundation Model for In-Context Learning on Relational Data.
https://kumo.ai/company/news/kumo-relational-foundation-model/.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv
e-prints (2019), arXiv-1912.

Mark Raasveldt and Hannes Miihleisen. 2019. Duckdb: an embeddable analytical
database. In Proceedings of the 2019 international conference on management of

[24

[25

[26]

~
=

(28]

[29]

[30

(31]

data. 1981-1984.

Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro
Dobles, Matthias Fey, Jan Eric Lenssen, Yiwen Yuan, Zecheng Zhang, et al. 2024.
Relbench: A benchmark for deep learning on relational databases. Advances in
Neural Information Processing Systems 37 (2024), 21330-21341.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolu-
tional networks. In The semantic web: 15th international conference, ESWC 2018,
Heraklion, Crete, Greece, June 3-7, 2018, proceedings 15. Springer, 593-607.
Benjamin Taskar, Eran Segal, and Daphne Koller. 2001. Probabilistic classification
and clustering in relational data. In International joint conference on artificial
intelligence, Vol. 17. Citeseer, 870-878.

Minjie Yu Wang. 2019. Deep graph library: Towards efficient and scalable deep
learning on graphs. In ICLR workshop on representation learning on graphs and
manifolds.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu.
2019. Heterogeneous graph attention network. In The world wide web conference.
2022-2032.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim.
2019. Graph transformer networks. Advances in neural information processing
systems 32 (2019).

Lukés Zahradnik, Jan Neumann, and Gustav Sir. 2023. A deep learning blueprint
for relational databases. In NeurIPS 2023 Second Table Representation Learning
Workshop.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V
Chawla. 2019. Heterogeneous graph neural network. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining.
793-803.


https://stellargraph.readthedocs.io/en/stable/hinsage.html
https://github.com/snap-stanford/relbench
https://github.com/snap-stanford/relbench
https://kumo.ai/company/news/kumo-relational-foundation-model/

	Abstract
	1 Introduction
	2 Background
	2.1 Relational Deep Learning
	2.2 Message Passing Graph Neural Networks on Heterogeneous Graphs
	2.3 The RelBench Relational Deep Learning Benchmark

	3 SQL-Based Relational Deep Learning
	3.1 SQL Sampling to Create Training Data
	3.2 Representing the Database as a Virtual Graph
	3.3 GNN Training in the DBMS

	4 The SQL-GNN System
	4.1 Training Pipeline Implementation

	5 Experiments
	5.1 Experimental Setup
	5.2 Task Specific Subgraph Formation
	5.3 Filtering Irrelevant Nodes

	6 Conclusion and Future Research
	References

