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ABSTRACT
Large Language Models (LLMs) have demonstrated exceptional po-
tential in a variety of tasks, including question answering, natural
language to SQL conversion, and tabular data processing. How-
ever, their potential for Column Type Annotation (CTA)—a cru-
cial component of data integration and analysis—remains largely
unexplored. This paper investigates whether advanced prompt-
ing techniques can improve LLM performance on CTA tasks and
examines the design of such techniques. In particular, we evalu-
ate two reasoning-based techniques, Chain of Thought (CoT) and
Retrieval-Augmented Generation (RAG), in two experimental se-
tups: (1) single-column annotation and (2) multi-column annotation
with contextual table information. Using both proprietary and open-
source LLMs for a comprehensive assessment, our results reveal
10–20% performance improvements compared to traditional and
previous prompting-based methods.
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1 INTRODUCTION
A large volume of critical information is stored in tabular formats,
making structured data essential across various domains such as
finance, healthcare, and e-commerce. These datasets form the back-
bone of analysis, reporting, and decision-making processes. How-
ever, the full potential of tabular data can only be realized with
clearly defined schemas and accurately labeled structures. Column
Type Annotation (CTA) is the task of assigning meaningful se-
mantic labels or types to table columns. Labels such as “Person,”
“Location,” and “Height” are key to interpreting data accurately and
are often mapped to established knowledge bases, such as DBpe-
dia1 or Schema.org2. Accurate column type annotation is critical
for enabling downstream tasks such as structured querying and
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1https://www.dbpedia.org/
2https://schema.org/

retrieval, schema matching in data integration, error detection and
correction in data cleaning, and effective data exploration.

Methods developed for the CTA task can be broadly categorized
into three main approaches: (1) Traditional deep learning methods,
including models like DoDuo [9], rely on Pre-trained Language
Models (PLMs) such as RoBERTa, which are fine-tuned to perform
classification tasks on column embeddings [2, 9]. (2) Approaches
leveraging knowledge graphs, as exemplified in the SemTab Chal-
lenge3, use the rich information within knowledge graphs to infer
the most plausible semantic type for a column. (3) Approaches
using Large Language Models (LLMs), with their remarkable per-
formance in diverse tasks such as language translation, question
answering, and natural language to SQL conversion, have demon-
strated potential in the CTA domain [6]. While PLM-based models
such as DoDuo [9] have demonstrated strong performance, LLMs
have emerged as competitive alternatives [6]. The effectiveness of
LLMs, however, depends heavily on the prompting techniques em-
ployed, underscoring the importance of carefully crafting strategies
to harness their full potential.

This paper explores whether the performance of LLMs on the
CTA task can be improved using techniques such as Chain of
Thought (COT) reasoning and Retrieval Augmented Generation
(RAG). Our study is conducted under two settings: (1) single-column
annotation, where the semantic type of a column is predicted inde-
pendently, and (2) multi-column annotation, which leverages the
contextual information of the entire table to improve prediction.
In addition to evaluating the effectiveness of these strategies, this
work provides insights into the factors influencing model perfor-
mance, including potential limitations of the models themselves,
the prompting strategies employed, and benchmark characteristics.

Our contributions are twofold: (1) an in-depth exploration of
various prompting and reasoning strategies tailored to the CTA
task, and (2) a comprehensive evaluation conducted using two LLM
families across both single-column and multi-column table settings,
demonstrating the effectiveness of the proposed approaches.

2 DATASETS AND MODELS
In this section, we detail the dataset and language models utilized in
our experiments, along with the metrics employed for evaluation.

2.1 Dataset
To provide detailed analysis while managing the computational
costs associated with LLMs, we selected a random sample from the
challenging VizNet dataset4 [4] for our experiments. Our sample
was restricted to tables where the overlap between the training and

3https://www.cs.ox.ac.uk/isg/challenges/sem-tab/
4https://paperswithcode.com/dataset/viznet-sato
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test sets was less than 60%. This was due to the fact that approxi-
mately 58% of VizNet’s test set columns fully overlapped with at
least one training set column, and this could bias the CTA results.
In fact, an evaluation of CTA benchmarks [1] showed that when
considering the part of the dataset where each test set column
exhibits 100% overlap with a training set column, DoDuo’s micro
F1 score reached 98% and the macro F1 score was 91%. However,
when this overlap was less than 10%, the micro and macro F1 scores
dropped significantly to 67% and 42%, respectively. This strong
correlation between performance and the overlap ratio suggests
potential model overfitting. Thus, by focusing on such more strict
subset, we aimed to mitigate the bias that could arise due to over-
lapping data, thereby ensuring a more fair comparison between
LLMs and DoDuo.

Given that our experiments involved both single-column and
multi-column settings, we specifically selected tables containing
three or more columns in order to use the same columns for both of
our settings. In total, our experimental dataset comprised 90 tables
with 300 columns spanning 32 distinct semantic types. For both the
single-column and multi-column settings, we used the same dataset.
In the single-column setting, we fed the columns to the model one
by one, while in the multi-column setting, we provided the entire
table to the model and predicted all columns simultaneously. The
frequency of each type in the test sample is shown in Figure 1.

Figure 1: Column types and type frequencies

2.2 Models
For our experiments, we utilized three distinct LLMs from two
model families: competitive GPT models accessed via the OpenAI
API5 and Llama 3 70B accessed through the Groq API6. By employ-
ing different models, we aimed to demonstrate the robustness of our
approaches and ensure that our findings are not model-dependent.

3 IN-CONTEXT LEARNING TECHNIQUES
This section provides a detailed discussion on the design of our
prompts and the adaptation of various in-context learning tech-
niques to address CTA-related challenges.

5https://openai.com/
6https://wow.groq.com/

3.1 Zero-Shot Learning
To ensure ameaningful comparisonwith Korini and Bizer’s work [6],
which conducted the CTA task using LLMs, we decided to use the
prompt design presented in that work as the basis of our approach.
Their experiments explored various designs and formats for pre-
senting tables and columns to the model for annotation. From these,
we selected the design that achieved the best results to build upon,
while also allowing us to directly compare our results with theirs.

Many LLMs, including themodels evaluated here, offer amessage
role format that structures the prompting process as a conversation.
This format distinguishes between messages from the user, the
system, and the model. Figure 2 presents the general structure of
our basic prompt utilized throughout this study. In the “zero-shot”
setting, the model is provided with a task description along with
a list of semantic type candidates representing the ground-truth
labels for the columns to be annotated. This is followed by the table
or column to be annotated.

System message: Your task is to classify the columns of a given
table with only one of the following classes that are separated with
commas ...

System message: Your instructions are: 1. Look at the columns
and the types given to you. 2. Examine the values of the columns.
3. Select a type that best represents the meaning of each column. 4.
Answer with the selected type only.

User message: Classify columns of this table:
Column 1: England Spain Austria Finland
Column 2: London Madrid Vienna Tampere

AI message:
Column 1: country
Column 2: city

Figure 2: Message roles and column format in prompt design

3.2 Few-Shot Learning
In this setting we provide examples along with their corresponding
answers within the prompts to help the model better understand
how to approach the task. Since we frame the task as a multi-class
classification problem and utilize datasets with both training and
test sets, we randomly selected examples from the training set to
prevent introducing bias into the model. For our experiments, we
chose five examples, ensuring that we stay within the model’s token
limitations while providing sufficient guidance for the model to
perform the task effectively. This choice aligns with the approach
used by the baseline [6], allowing for a direct comparison of results.

3.3 Retrieval-Augmented Generation (RAG)
RAG [3] has emerged as a powerful technique to enhance the capa-
bilities of LLMs by augmenting their knowledge with external in-
formation sources. In essence, RAG combines the generative power
of LLMs with the ability to retrieve relevant context from external
knowledge bases, allowing them to generate more informed and
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accurate responses. This method has been particularly effective in
tasks requiring specialized knowledge or up-to-date information
that may not be fully captured by the model’s parameters [8].

When applying RAG to the CTA task, our objective is to equip
the model with the most relevant in-context examples to enhance
its annotation capabilitues. Observing that columns with the same
or similar values often share the same or related semantic labels,
we select examples from the training set that are closest in the
embedding space to the table or column being annotated. Unlike
traditional learning-based models that require extensive training
on large datasets, LLMs offer the advantage of achieving compara-
ble results without such task specific resource-intensive processes.
Next, we provide more detail on the construction of the reference
set of examples used for both single-column and multi-column
RAG.

Single-Column RAG To build the reference set of candidates
for single-column RAG, we selected a sample of 2,000 columns
from the Viznet training set, ensuring a representative distribution
across all semantic types. Each type was guaranteed a minimum
of 10 columns to maintain adequate representation. To promote
diversity and mitigate potential biases, the column selection pro-
cess was randomized within each type, resulting in a balanced and
diverse reference set. For embedding generation, we utilized the
“text-embedding-ada-002” model provided by OpenAI7. The model
produced vector representations that captured the conceptual se-
mantics of the column values. The embedding process involved
serializing the column values into a space-separated string, which
was then passed to the model to generate the corresponding em-
bedding vector.

Multi-Column RAG For the multi-column setting, we con-
structed our reference set by randomly selecting 300 tables from
the training set, comprising a total of 1,000 columns. To prepare
the tables for embedding generation, the columns within each table
were serialized into a space-separated string, with columns sep-
arated by the “|” symbol. This format captured the structure and
context of the table while preserving the relationships between
columns. We also used the ‘text-embedding-ada-002” model via
the OpenAI API to generate embeddings of the serialized tables.
Figure 3 illustrates an example of a serialized table, as used in the
multi-column RAG process.

Column 1: Thursday Friday Saturday | Column 2: Away Away
Away | Column 3: Final Final Final | Column 4: Loss Loss Win

Figure 3: Example of a serialized table used for RAG in the
multi-column setting

After sampling and embedding the training set, RAG for the
multi-column CTA task was performed by selecting four examples
for few-shot prompting 8. These examples were chosen based on
the Cosine similarity, comparing the embeddings of the sampled
columns (or tables) with the embedding of the column (or table)
being annotated.

7https://platform.openai.com/docs/guides/embeddings/embedding-models
8The number of in-content examples for our multi-column setting was set to 4 in order
to keep the relatively larger prompt within the context window.

3.4 Chain of Thought Reasoning
Chain of Thought (CoT) enables LLMs to tackle problems incremen-
tally, breaking down complex tasks into simpler, more manageable
subproblems. To evaluate CoT in the context of the CTA task, we ex-
plored the idea of highlighting the relationships between columns,
hence providing the model with additional context to improve its
performance.

Example:
Column 1: Australia Brazil France Germany Italy
Column 2: WIN WIN LOST WIN LOST
Column 3: AUS BRA FRA GER ITA

Answer:
Reasoning: Based on the names of countries in the first column
and the presence of results like “WIN,” “TIE,” and “LOST” in the
second column, it appears that the first column represents teams,
the second column indicates the result of a match, and the third
column contains the corresponding team symbols. Therefore, the
column types are [“team”, “result”, “symbol”].

Figure 4: Example of CoT.

For instance, consider a column containing the names of various
countries. By examining the content of other columns in the table–
such as “population,” “code,” and “language” in one case, or “name,”
“result,” and “rank” in another–the model can infer whether the
column’s semantic type is “country” or “team.” In this context, guid-
ing the model to predict column types through CoT can improve
its accuracy. However, CoT was not applied in the single-column
setting, as the lack of relational context offered limited opportunity
for meaningful reasoning.

To incorporate CoT into the prompt, we added a reasoning step
before the answer for each example provided to the model in the
few-shot setting, and for each prompt we used 5 examples, allowing
for a direct comparison with simple few-shot, and the RAG method.
This encourages the model to engage in a similar reasoning pro-
cess before predicting the type of a column. Figure 4 illustrates an
example of this approach, including the reasoning step.

4 EVALUATION RESULTS
This section evaluates our LLM-based approaches leveraging two
GPT-based models and Llama 3, and compares their performance
with DoDuo, a state-of-the-art learning-based model.

4.1 Single-Column Setting
Tables 1 shows the results of Llama 3, GPT-3.5-turbo and the newer
GPT-4.1-mini, using zero-shot, few-shot, and RAG techniques, along-
side the results of DoDuo in the single-column setting. In this setup,
the prompts asked the model to predict only one column at a time,
without any additional context from the table from which the col-
umn was selected.

The results reveal that RAG is the most effective prompting
technique across all three models, consistently improving their per-
formance in the single-column setting. All models surpassed the
traditional DoDuo benchmark under RAG prompting. GPT-4.1-mini
achieved the highest scores (micro F1: 0.81, macro F1: 0.52), with
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Table 1: Macro and Micro F1 scores for different prompting
methods using using two model families for single column
setting

Model Method Micro F1 Macro F1
- DoDuo 0.76 0.47
GPT-3.5-turbo Zero-Shot 0.45 0.33
GPT-3.5-turbo Few (5-shots) 0.50 0.33
GPT-3.5-turbo RAG (5-shots) 0.79 0.49
GPT-4.1-mini Zero-Shot 0.73 0.49
GPT-4.1-mini Few-Shot (5-shots) 0.71 0.52
GPT-4.1-mini RAG (5-shot) 0.81 0.52
Llama 3 Zero-Shot 0.66 0.39
Llama 3 Few (5-shots) 0.73 0.48
Llama 3 RAG (5-shots) 0.80 0.48

Table 2: Macro and Micro F1 scores for different prompting
methods using two model families for multi-column setting

Model Method Micro F1 Macro F1
- DoDuo 0.82 0.53
GPT-3.5-turbo Zero-Shot 0.71 0.45
GPT-3.5-turbo Few (4-shots) 0.74 0.52
GPT-3.5-turbo CoT (4-shots) 0.79 0.46
GPT-3.5-turbo RAG (4-shots) 0.87 0.65
GPT-4.1-mini Zero-Shot 0.77 0.55
GPT-4.1-mini Few-Shot (4-shots) 0.79 0.54
GPT-4.1-mini COT (4-shots) 0.85 0.64
GPT-4.1-mini RAG (4-shot) 0.88 0.67
Llama 3 70B Zero-Shot 0.69 0.44
Llama 3 70B Few (4-shots) 0.78 0.53
Llama 3 70B CoT (4-shots) 0.84 0.55
Llama 3 70B RAG (4-shots) 0.87 0.65

Llama 3 close behind (micro F1: 0.80, macro F1: 0.48). Both models
consistently outperformed GPT-3.5-turbo, which also performed
well with RAG (micro F1: 0.79, macro F1: 0.49). While Llama 3 ex-
hibited more stable performance across all prompting strategies,
showing moderate gains from few-shot prompting, GPT-3.5-turbo’s
results varied significantly, showing weaker performance with zero-
shot and few-shot approaches. These findings underscore the impor-
tance of advanced models—such as Llama 3 and GPT-4.1-mini—for
column type annotation and highlight RAG’s ability to optimize
predictions, particularly for weaker models like GPT-3.5-turbo that
struggle under standard prompting techniques.

4.2 Multi-Column Setting
In contrast to the single-column experiments, the multi-column
setting provides the model with additional context from the table,
allowing it to leverage relationships between columns to improve
its predictions. In this setup, the prompts present multiple columns
simultaneously, enabling the model to draw upon the intercon-
nected data to determine the semantic types more accurately. Table
2 displays the results of GPT-4.1-mini, GPT-3.5-turbo and Llama
3, using zero-shot, few-shot, RAG and CoT techniques, along with
the results of DoDuo in the multi-column setting.

In the multi-column setting, RAG emerged as the most effec-
tive prompting technique as well, yielding identical top scores for

both Llama 3 and GPT-3.5-turbo (micro F1: 0.87, macro F1: 0.65),
outperforming DoDuo and [6], and a slightly better score for GPT-
4.1-mini. GPT-4.1-mini again achieved the highest scores under
RAG (micro F1: 0.88, macro F1: 0.67), with Llama 3 close behind
(micro F1: 0.87, macro F1: 0.65), and both consistently outperformed
GPT-3.5-turbo. GPT-4.1-mini and Llama 3 generally surpassed GPT-
3.5-turbo across most techniques, leveraging multi-column context
more effectively, particularly with CoT, where they scored micro F1:
0.84-0.85 and macro F1: 0.55-0.64. GPT-3.5-turbo, however, strug-
gled with reasoning-based techniques, highlighting its limitations
in inter-column relationship exploitation compared to Llama 3.
These results reinforce trends from single-column experiments,
underscoring GPT-4.1 and Llama 3’s superiority for complex anno-
tation tasks and RAG’s consistent effectiveness across both settings
by incorporating external knowledge to enhance predictions.

5 CONCLUSION
In this paper, we set out to investigate if the performance of LLMs
on CTA tasks can be improved using chain-of-thought abd RAG
techniques described. We compared these approaches against Do-
Duo and the approach presented in [6], from which we adopted
our prompt design based on their best-performing strategy.

Our experiments highlighted the effectiveness of the RAG ap-
proach in both single and multi-column settings, underscoring its
ability to generate relevant examples that significantly improved
model performance. In the multi-column scenario, the CoT method
also delivered strong results, proving to be a valuable approach
when leveraging inter-column relationships.

A possible future direction for our work is applying or extending
the techniques developed here to other tabular annotation tasks,
such as column property annotation [7], table relationship extrac-
tion [5], and table cell classification [10].
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