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ABSTRACT

The rapid growth of scientific literature presents both opportuni-
ties and challenges for extracting actionable insights to support
evidence-based decision-making, in-depth analyses, and resolution
of discrepancies among contradicting scientific results. While ta-
bles in research papers are critical sources of scientific claims, their
structural diversity and dispersed contextual details hinder auto-
mated analysis. We introduce a novel approach to model and extract
fine-grained claims, structured as (subject, measure(s), outcome(s))
triples, from such tables using large language models (LLMs). As
part of the DESIREE project, which focuses on developing scalable
methods for analyzing scientific literature to support robust, future
research, our contributions include: (i) a claim model capturing de-
tailed experimental contexts; (ii) a benchmark of 1,698 fine-grained
claims from 80 papers in medicine and computer science; and (iii) ex-
perimental evaluation with three LLM-based approaches, using four
LLMs. Our manually curated benchmark serves as a valuable re-
source for future research, and our results highlight the potential
of large language models (LLMs) to support in-depth analysis of
scientific findings.
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1 INTRODUCTION

The global scientific production, measured in number of publica-
tions, is growing at a very fast pace. The insights and research
findings reported in scientific papers represent a unique opportu-
nity as they can serve as a treasure trove of knowledge with the
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potential to support evidence-based decision-making processes,
inspire new research directions, and drive innovation in various
domains. To harness its full potential, it is important to conduct
in-depth analyses of scientific literature. However, the sheer di-
versity of scientific results raises major challenges and warrants
considerable effort for analyzing published literature.

Many attempts have been made to develop tools and techniques
for automatically exploring, analyzing, and extracting insights from
the scientific literature. For example, significant efforts focused on
the automation of systematic reviews of the literature [29, 45],
whose goal is to provide comprehensive summaries of research
articles, addressing one or more research questions, in order to
synthesize a large number of publications. More recently, some
commercial solutions based on large language models (LLMs) are
being proposed, e.g., ScholarAI [2], Scite [3], Consensus [1], as well
as the “DeepResearch” features by ChatGPT and Gemini. These
tools are designed to facilitate automated literature reviews across
large corpora of articles. They provide effective summaries and
demonstrate good reasoning abilities, but they typically tend to
summarize and reason about findings reported in publications at a
coarse level of granularity.

We observe that a fine-grained extraction of scientific results
is crucial to enable precise and in-depth analyses, for example,
to reveal the causes of apparent contradictions in the findings of
different articles, or discover new research directions.

For instance, in medicine, a systematic review often includes a
meta-analysis: a statistical technique that synthesizes quantitative
data from multiple independent studies investigating similar hy-
potheses, aiming to produce a more robust and reliable conclusion.
This process requires detailed data from numerous studies to en-
hance the precision and power of the overall estimate. To give an
example, consider recent meta-analyses that study the correlation
between coffee consumption and the incidence of various types
of cancer: Kennedy et al. [28], which focuses on hepatocellular
carcinoma, analyzed 26 papers; Yu et al. [25], on lung cancer, 26
papers; Wang et al. [48], on breast cancer, 45 papers. The authors
of these studies had to extract detailed and structured information
from each article, including information about the study design,
population characteristics (e.g., age, sex, and health status), con-
sumption details (type, dosage, duration), and the comparator or
control condition. These data extraction activities are extremely
time-consuming and require significant efforts from researchers [4].
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It is worth observing that these studies, which are based on
fine-grained analysis of large corpora of papers at scale, are crucial
to accelerate the discovery of new insights and drive scientific re-
search towards previously ignored or underexplored directions. For
example, the study by Kennedy et al. suggested that each additional
two cups of coffee per day was linked to a 35% lower risk of hepa-
tocellular carcinoma. Building on such findings, other researchers
pursued new research directions in liver cancer. Deng et al. [13]
used genetic markers to confirm a causal relationship between
coffee intake and reduced liver cancer risk in an East Asian popula-
tion, ruling out confounding factors. Additionally, Fan et al. [15]
proposed that caffeine in coffee may inhibit a pro-inflammatory
complex involved in liver carcinogenesis, opening new avenues for
research, such as identifying caffeine-affected biomarkers.

In a computer science scenario, consider a researcher examin-
ing recent advances in Entity Resolution, a well-known data man-
agement problem. When analyzing state-of-the-art methods, the
researcher encounters discrepancies among results reported in dif-
ferent papers. For example, a paper by Peeters et al. [41] reports an
F1-score of 82.11 for Ditto, a state-of-the-art solution, on the widely
used ABT-Buy dataset, while the original Ditto paper [35] claims
a higher F1-score of 89.33 on the same dataset. This discrepancy
(82.11 vs. 89.33) stems from variations in Ditto’s pretrained embed-
dings used in the two studies,! underscoring the need for careful
fine grained data analysis of the experimental settings from the
literature. Interestingly, a subsequent study focused precisely on
the analysis of pretrained embeddings for Entity Resolution [50].

Our paper introduces a novel approach to model and extract
scientific findings at a fine granularity, specifically by identifying
their detailed contextual information as reported in scientific publi-
cations.

This work is part of a broader project, DESIREE (Data-driven
Empirical Science: Improving Robustness, Explainability, and Ex-
ploration), that aims to develop scalable solutions for analyzing
scientific literature, to enable robust, future research.

In DESIREE, we model scientific findings with fine-grained, struc-
tured data called claims. Intuitively, a claim represents both the
measure and the outcome of a scientific finding, along with the
associated details of the relevant experimental setting. Example
claims are presented in Section 3.

Automatically identifying and representing scientific findings
and their associated context in the form of claims is a challenging
issue, which requires converting the information conveyed by pa-
pers into a form amenable for complex tasks, such as meta-analysis
or comparison of literature results. As tables are the predominant
format for presenting findings in a research paper [17, 24, 27], in our
solution they serve as the primary source for extracting information
to construct the claims found in research papers in a structured
format. However, although tables can serve as crucial sources of
information for building claims, many details necessary to com-
plete the specification of a claim are often dispersed throughout
the paper, appearing in the table caption and the main text.

Since Large Language Models (LLMs) have demonstrated re-
markable abilities in natural language processing tasks, they are

!Namely, [41] adopted BERT instead of RoBERTa, which was used in Ditto.

promising for the challenging task of extracting claims from scien-
tific articles.

In this paper, we present the results of our experimental analysis
on leveraging LLMs to extract fine-grained claims from scientific
articles, and make the following contributions: (i) We introduce a
the notion of claims to model scientific findings at a fine-granularity
level. (ii) We introduce a benchmark comprising over 1,698 fine-
grained claims extracted from 80 papers in the domains of medicine
and computer science. (iii) We report the results of three LLM-
based approaches for the efficient and effective extraction of claims,
using a variety of LLMs.

2 RELATED WORK

Automated extraction of structured research findings from the
rapidly expanding volume of scientific literature has garnered sig-
nificant attention, driven by its potential to accelerate scientific
discovery and facilitate knowledge synthesis.

Efforts to automate systematic reviews have aimed to synthesize
large corpora of scientific articles [29, 45]. Commercial tools like
ScholarAI [2], Scite [3], and Consensus [1] leverage LLMs to provide
summaries and answer research questions. However, these tools
focus on coarse-grained insights, lacking the detailed contextual
information (e.g., study design, population characteristics) needed
for precise meta-analyses or discrepancy resolution, which our
approach targets.

Several efforts have focused on building knowledge graphs from
scientific abstracts to represent structured knowledge [5, 9, 14, 16,
21, 23, 40, 46, 49]. These approaches rely on ontologies to formalize
predefined concepts and relationships, limiting their ability to spe-
cific domains and high-level entities. By focusing solely on abstracts,
they overlook detailed experimental findings that are reported in
tables, which our method targets for comprehensive, fine-grained
extraction.

Inspired by SciBERT [6], a pretrained language model based on
BERT, trained on a science and technology corpus, many pretrained
language models have been specialized in diverse scientific fields,
ranging from computer science [22] to biomedicine [19, 30, 31].
While effective for entities explicitly mentioned in text, these mod-
els struggle with tabular data and require extensive fine-tuning on
domain-specific labeled datasets, which is resource-intensive. Their
lack of generalizability across scientific domains contrasts with
our approach, which leverages LLMs for cross-domain adaptability
without extensive fine-tuning.

Recent studies have explored LLMs for extracting structured
experimental data. For example, Dagdelen et al.[11] employ LLMs
to extract structured data from scientific publications in the field
of solid-state materials, but the extraction is performed only from
abstracts, thus missing important details of the experimental out-
comes. ChatExtract [42] focuses on material science and aims at ex-
tracting Material-Value-Unit triplets using engineered prompts and
follow-up questions to ensure accuracy. Similarly, Circi et al. [10]
present a domain-specific solution for polymer composites, aiming
to extract structured material properties from both text and tables.
In the machine learning domain, Kardas et al. [26] developed a
pipeline that identifies tables containing scientific results and clas-
sifies each cell into one of a set of predefined categories: dataset,



metric, paper model, cited model, and task. In the broader domain
of computer science, Hou et al.[20] addressed the related problem
of extracting from an experimental scientific paper: tasks, datasets,
evaluation metrics, and the corresponding best numeric scores.
While these approaches mark a step towards fine-grained data ex-
traction from tables, they remain restricted to a predefined set of
properties and measurement contexts within a narrow scientific
area, limiting their broader applicability.

The challenge of extracting information from scientific tables has
also been explored through table-based question answering [33, 43,
51] and scientific fact-checking [8, 39]. However, these systems typ-
ically retrieve answers to specific questions, rather than capturing
all relevant claims expressed in tabular form.

Lu et al. [38] provide a comprehensive survey on the use of
large language models for table processing across a broad range of
tasks, including table question answering, fact verification, table-
to-text generation, table detection, table extraction, column type
annotation, and entity linking. Complementing this, another recent
study [44] evaluates the capabilities of LLMs in understanding
the structural properties of tables, focusing on tasks such as table
partitioning, table size detection, merged cell detection, cell lookup
and reverse lookup, and column and row retrieval. While these
works offer valuable insights into the structural and functional
aspects of table processing, they primarily address generic table
understanding and task-specific interactions. In contrast, our work
aims at extracting all scientific claims embedded in experimental
tables—a task that requires not only structural parsing but also
fine-grained semantic interpretation of the tabular content in the
context of scientific experimentation.

3 MODELING CLAIMS

In this section, we present our model for abstracting fine-grained
claims from scientific papers, capturing detailed experimental find-
ings and contextual information. A scientific publication reports
scientific “findings" or “results" discovered by scientists from a study.
To enable fine-grained extraction of these findings, we represent
scientific claims as triples, as follows:

(subject, measure(s), outcome(s)).

The subject comprises a set of |name, value| pairs, each pair termed
specification, which captures detailed contextual information. The
measure(s) represent a vector of metrics or measurement attributes
used in the experiments, while the outcome(s) denote the corre-
sponding measured values. The distinction between a vector of
a single measure and a vector of multiple measures depends on
whether each measure can be meaningfully understood in isolation.
If a measure cannot be interpreted independently of other related
measures, then they must be reported together in the same vector.
To give an example, consider the table shown in Figure 1, which
reports the results of an experimental evaluation of different text-
to-SQL models. Such a table includes 24 claims, where each claim
reports the performance expressed by either the “Syntactical Accu-
racy” or the “Execution Accuracy” metric of a model (e.g., “Pointer-
SQL+EG(3)”), on a split (either “Dev” or “Test”) of the “WikiSQL”
dataset. Three illustrative claims extracted from this table are:

e ({ |Model, Pointer-SQL (2017)|, |Dataset, WikiSQL|,
|Split, Dev| }, [Syntactical Accuracy], [61.8] )

Model Dev Test

AcCyn  AcCex  AcCsyn  AcCex

Pointer-SQL (2017) 61.8 725 623 719
Pointer-SQL +EG 3) 666 773 667 769
Pointer-SQL +EG (5) 675 784 679 783

Coarse2Fine (2018) 72.9 79.2 71.7 78.4
Coarse2Fine+ EG(3)  75.6 83.4 74.8 83.0
Coarse2Fine + EG (5) 76.0 84.0 754 83.8

Table 1: Test and Dev accuracy (%) of the models on
WikiSQL data, where Acc,y, refers to syntactical accuracy
and Acce refers to execution accuracy. “+ EG (k)” indicates
that model outputs are generated using the execution-guided
strategy with beam size k.

Figure 1: An example in computer science, from [47].

e ({|Model, Pointer-SQL + EG (3)|, | Strategy, Execution-
guided|, |Beam size, 3|, |Dataset, WikiSQL|, |Split,
Dev|}, [Syntactical Accuracy], [66.6] )

e ({|Model, Pointer-SQL + EG (3)|, | Strategy, Execution-
guided|, |Beam size, 3|, |Dataset, WikiSQL|, |Split,
Test|}, [Syntactical Accuracy], [66.7])

This example highlights several challenges inherent in correctly
extracting claims from tables. First, while some specifications (e.g.,
“Model”) and their corresponding values are explicitly stated within
the table, others (e.g., “Dataset”) are located only in the table cap-
tion. For some specifications the name (and the semantics) need
to be extracted from the text of the paper: in our example, this is
the case for “Split” of the dataset (whose value is either “Dev” or
“Test”), which is mentioned in the paper, in the paragraph describing
the experimental setting. A further challenge stems from nested ta-
ble structures: for instance, the table of our example is horizontally
nested by “Split”. Moreover, some cells contain multiple specifi-
cations, often encoded through ad hoc formatting. In our example,
the “Execution strategy” and “Beam size” are embedded within
the name of the model, with their semantics clarified in the table
caption. Finally, metric names—such as ’Syntactical Accuracy’ and
’Execution Accuracy’—may exhibit slight variations between the
table and its caption, yet consistently convey the same essential
information.

The notion of claims offers a structured, fine-grained represen-
tation of findings and information presented in scientific studies,
allowing for data-oriented approaches to analyze the outcomes on
a large scale across a vast collection of papers.

Table 3: Results of multivariate Cox proportional hazards regression analysis performed to assess the impact of
multiple factors on overall survival (OS) from first phase I treatment

Variable Contrast Hazard ratio (95% CI) P value
ECOG performance status >0vs. 0 1.47 (0.90, 2.41) 0.12
Liver metastases Yes vs. No 172 (1.01,2.91) 0.045
No. of metastatic sites >2vs. <=2 1.33 (0.9, 2.25) 0.28
Prior radiation therapy Yes vs. No 1.58 (0.95, 2.61) 0077
Prior FOLFIRINOX Yes vs. No 1.73 (1.01,2.98) 0.046
Prior gemcitabine plus nab-paclitaxel treatment Yes vs. No 1.08 (0.58, 2.01) 0.80

Figure 2: An example in the medical domain, from [18].



Figure 2 shows another example, from the medical domain, that
is useful to illustrate a vector of measurements. The table reports
the results of a statistical analysis (“multivariate Cox proportional
hazards regression”) evaluating factors affecting overall survival
(OS) in cancer patients starting phase I treatment. For each variable
(e.g., ECOG performance status, liver metastases), it lists the con-
trast (e.g., >0 vs. 0), hazard ratio (HR) with 95% confidence intervals
(CI), and p-value. The HR quantifies the relative risk of the event
(death) occurring in one group compared to another, adjusted for
other variables (for example, Liver metastases (Yes vs. No): HR =
1.72 (p = 0.045) indicates a 72% increased risk of mortality for pa-
tients with liver metastases). Confidence Interval (CI) and p-value
provide additional insights about the hazard ratio (HR): the 95%
CI provides a range within which the true hazard ratio is likely
to lie with 95% confidence (a narrow CI, suggests a more precise
estimate); the p-value measures the statistical significance of the
HR, testing the null hypothesis that the variable has no effect on
survival (i.e., HR = 1.0). We observe that 95% CI and p-value refer
to the HR, and hence they have to be considered together as a
composite measure.

Accordingly, two illustrative claims extracted from this table are
as follows:

e ({|Variable, ECOG performance status|, |Contrast, >0
vs. 0], |Statistical method, Multivariate Cox|, | Impact
on, Overall survival|, |Starting phase,I treatment|},
[HR, 95% CI, P-valuel, [1.47,0.90-2.41,0.12] )

e ({|Variable, Liver metastases|, |Contrast, Yes vs. No|,
|Statistical method, Multivariate Cox|, | Impact on,
Overall survival|, |Starting phase, I treatment|},

[HR, 95% CI, P-valuel, [1.72, 1.01-2.91, 0.045] )

4 THE DESIREE BENCHMARK

We introduce a human-annotated benchmark consisting of 80 tables
reporting scientific findings across two domains—computer science
and medicine—each covering two specific topics: Text-to-SQL and
Entity Resolution for computer science, and pancreatic cancer and
HIV for medicine.

Numerous tools and techniques exist for extracting text and
tables from research articles [12], including deep learning-based
approaches for layout analysis [7], OCR [53], and table parsing [34].
Our contribution in this work is orthogonal to this body of work.
Specifically, we focus on the downstream task of utilizing this data
rather than on refining the parsing process. Given this, we chose to
work with open access publications directly available in a textual
format, namely HTML on arxiv 2 and in XML on PubMed, 3 similarly
to [26].

We randomly selected 80 publications, using targeted search key-
words related to text-to-SQL, entity resolution, pancreatic cancer and
HIV to cover the computer science and medicine domains. For each
publication, we randomly selected one table reporting experimental
results. We limited our selection to a single table per publication to
maximize diversity, as authors often use a consistent style across
multiple tables within the same article. For each table, we extracted
the following elements:

https://arxiv.org/ https://ar5iv.]labs.arxiv.org/
3https://pme.ncbi.nlm.nih.gov/tools/openftlist/

the HTML (or XML, in case of PubMed) source of the table;
the associated caption;

any footnotes referenced in the table;

the first paragraph referencing the table in the text of the
article.

Table 1 shows structural features of the tables. A header or index
(i.e,. the first column if it is a dimension of the table) is considered
nested if at least one its columns (or rows) is nested. Hence, a table
is flagged as nested if it presents at least one nested header or nested
index, otherwise it is flagged relational. A table is reported as cross-
table if presents features on both header and index, and for which
the metric or measure used in the experiment is mentioned in the
caption or the paragraph. Finally, we report the average number of
rows and columns.

Two observations are worthy of brief discussion regarding the
dataset. Cross-tables and relational tables seems to be more common
in the computer science’s topics we have taken into consideration,
while in medicine it appears to present a generally larger number
of nested tables (specifically nested indexes) compared to computer
science. Also, the average number of rows is higher in medicine
than computer science.

For each table, we manually constructed a ground truth set of
the claims it reports. As we are interested in a comprehensive fine-
grained description of the claims, we have taken into account also
the experimental details, specifications or measures, that may have
been described in the caption of the table or in the referencing
paragraph and not necessarily captured in the table explicitly.

Table 2 shows the statistics of the content of the benchmark
dataset, both for source data and ground truths. For each topic, we
show the total count of characters for each of the elements in the
data source (table, caption, footnotes and paragraph), along with
the number of claims and specifications in the ground truths.

4.1 Metrics

We define two sets of evaluation metrics, each capturing different
aspects of extraction accuracy:

e Claims Precision, Recall, F1-score:These metrics assess
whether the extraction process successfully identifies and
captures the correct set of claims. Precision is computed
as the proportion of matched claims among all extracted
claims, while recall measures the proportion of ground truth
claims that were successfully matched to an extracted claim.
F1-score is computed as the harmonic mean of precision
and recall.

o Specifications Precision, Recall, F1-score: These metrics
focus on the set of specifications within the matched claims;
namely, the subject elements describing the experimental
context (e.g., datasets, condition, treatment, population).
The goal is to evaluate whether the model accurately cap-
tured the contextual elements of a result, independent of
the associated metrics or outcomes.

This two-tiered evaluation—first at the level of claims, then at the
level of specifications—allows us to assess not only whether the
model identifies the right results but also whether it understands
and captures the underlying experimental setup.
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Table 1: Structural characteristics of tables by domain and topic. For each topic, we report the number and percentage of tables
exhibiting specific structural features. Each table is categorized as either relational or nested, and these two categories are
mutually exclusive and exhaustive (i.e., their counts sum to 100%). Other features—cross-table structure, nested index, and nested
header—are not mutually exclusive and can co-occur within the same table. Average row and column counts are also reported

for each topic.

Domain  Topic #relational #nested #cross #nested #nested avg#rows avg #cols
tables tables tables indexes headers
Computer Text-to-SQL 11 (55%) 9 (45%) 13 (65%) 4(20%) 7 (35%) 6.2 5.15
Science Entity resolution 13 (65%) 7 (35%) 10 (50%) 3(15%)  5(25%) 5.0 5.55
Medicine  Pancreatic cancer 3 (15%) 17 (85%) O 9(45%) 11 (55%) 9.9 5.85
HIV 11 (55%) 9(45%)  4(20%) 7(35%) 3 (15%) 8.0 4.85
Table 2: Dataset statistics across domains and topics.
Domain  Topic #chars #claims #specifications
tables captions footnotes paragraphs
Computer Text-to-SQL 30,852 3,227 0 14,333 471 2,086
Science Entity resolution 23,957 2,585 0 19,810 406 1,544
Medicine  Pancreatic cancer 60,802 1,817 2,792 9,734 539 2,687
HIV 24,828 1,899 5,274 6,512 282 1,392

5 EVALUATING CLAIM EXTRACTION BY
LLMS

In this section, we present the experimental evaluation of three large
language model (LLM) strategies designed to extract fine-grained
claims, structured as (subject, measure(s), outcome(s)) triples, from
the tables and their associated elements of our benchmark. The
strategies we consider are 0-shot direct extraction, 1-shot direct
extraction, and bootstrap, a few-shot extraction performed by a
small LLM bootstrapped by examples generated by a larger LLM.
These strategies are assessed using four distinct large language
models (LLMs) for their effectiveness in extracting claims and their
ability to capture detailed specifications. Our evaluation leverages
an LLM-as-a-judge framework, where a large LLM evaluates the
semantic and factual accuracy of extracted triples against the man-
ually curated ground-truth. We report precision, recall, F1-score
on both claim extraction, focusing on the completeness and cor-
rectness of subjects, measures, and outcomes, and specification
extraction, emphasizing the richness of contextual details.

5.1 LLM Claim Extraction Pipelines

We explored three pipelines to assess the ability of LLMs to perform
the task effectively. These pipelines serve as exploratory approaches
aimed at identifying the limitations of LLMs, guiding the design of
more effective and efficient solutions.

0-shot direct extraction: The LLM is prompted to extract all
claims from the whole content available. The prompt describes
the notion of claim and the JSON format we need in output, then
reports the target table (in HTML or XML format), its caption and
footnotes, and the first paragraph that mentions the table in the

paper.

1-shot direct extraction: The prompt used in this pipeline
extends that of the previous one by including an example consisting
of a table and its associated set of claims. While the example is
aligned with the scientific domain of the paper containing the
table (medicine or computer science), it remains generic—that is,
it does not reflect the specific topic of the paper. Moreover, the
table has a relational structure, with no nested elements or cells
containing multiple data points, as in preliminary experiments, we
observed that examples with more complex table structures yielded
poorer results, as they did not align well with the actual table and
consequently confused the LLM.

Bootstrap Extraction: While more powerful LLMs generally
yield better results, they come with higher computational and mon-
etary costs. Aiming to mitigate these costs and help smaller LLMs
perform more effectively, for each table, this pipeline first uses
a large LLM with the same prompt as the previous pipeline, but
applied to only a small portion of the table (e.g., a few rows). The
claims extracted from this subset are then used as in-context exam-
ples to guide a smaller LLM in processing the whole corpus of the
table. The rationale behind this pipeline is based on the observa-
tion that claim patterns are often consistent across the rows of a
table. Therefore, providing a well-structured in-context example,
generated by a large (and possibly more precise) LLM from the first
few rows, can effectively guide the smaller model and potentially
improve its performance when extracting claims from the entire
table.

This approach significantly reduces the number of tokens pro-
cessed by the large LLM (in particular those produced in output)*

41t is worth noting that, in commercial LLMs, output tokens are typically more expen-
sive than input tokens—for instance, with OpenAl models, the cost of output tokens is
4x higher.



while providing the smaller, more cost-effective model with tailored
examples specific to the input table.

All outputs produced by the pipelines are post-processed to
retain only the lines that match a regular expression validating the
expected claim format.

5.2 Large Language Models

In addition to evaluating the performance of different extraction
strategies, we also employed a diverse set of large language models
varying in size, including both proprietary and open-weight models.
In particular, we selected the following models for our experiments:

o GPT-4o0: the OpenAl model, accessed via the Microsoft
Azure OpenAl Service.

e Claude 3-5 Sonnet: the Anthropic model, accessed through
Amazon Bedrock.

o LLaMAS3-70B: A state-of-the-art open-weight model de-
veloped by Meta. Accessed through Amazon Bedrock.

e LLaMA3-8B. A lightweight counterpart to the 70B model,
also accessed via Amazon Bedrock.

In the bootstrap pipeline, for each topic, we used the best per-
forming LLM to generate examples in the first phase, and then
employed the smallest LLM (LLaMA3-8B) to perform the extraction
on the full table.

5.3 Evaluation Procedure: LLM-as-a-Judge

Evaluating the correctness of extracted claims poses unique chal-
lenges due to the heterogeneity of the source data and the gen-
erative nature of large language models. Models may paraphrase,
restructure, or hallucinate content, making it difficult to directly
match extracted claims to those in the ground truth using exact
string comparison. For example, from table in Figure 1 while the
ground truth reports Syntactical accuracy as measure, some models
extracted Accsyn. Even using other techniques is rendered difficult
by the diversity of actual information discussed in each paper for
each topic. In addition, the large number of claims in the benchmark
makes a human-based comparison process very time consuming.
To address these challenges, we adopt an LLM-as-a-Judge [52]
approach. Specifically, we use an LLM (Claude 3-5 Sonnet) to evalu-
ate whether an extracted claim matches a claim in the ground truth.
Each extracted claim is compared to all the ground truth claims.
Once a match is found, both the extracted and the ground truth
claims are removed from further comparison. Note that we do not
provide to the LLM-as-a-judge any constraints on the elements of
the claims that must align to determine a match, thus even partial
matches may be identified by the LLM. This matching procedure
allows us to compute precision, recall, and F1-score scores for each
experiment based on the number of matches found between the ex-
tracted and ground truth claims. For each pair of matching extracted
and ground truth claims, the same LLM-as-a-judge approach is used
to evaluate precision, recall and F1-score scores for specifications.
It is worth observing that this approach penalizes LLMs that
extract the same claim multiple times with different representations,
reducing precision, and LLMs that extract independent measures
in one claim, reducing recall. As we will discuss later, this issue
arises particularly in the medical domain, where the LLM, instead of

generating a single claim with a vector of measurements, produces
multiple claims, one for each individual element of the vector.

To assess the reliability of the evaluation process, we performed
an additional manual check on a sample of the results of the LLM
as-a-judge evaluation. Across all the experiments, we randomly
selected 100 samples of pairs of claims labeled as matched, 100
samples labeled as non-matching, 100 pairs of specifications labeled
as matching, 100 labeled as non-matching. Upon manual inspection,
we found that all pairs labeled as matched were correct. One claim
was incorrectly labeled as non-matching. The extracted claim in-
cluded all but one specification, which was present in a paragraph
but not extracted, but the model retrieved two measures from dis-
tinct table columns while in the ground truth there was only one
of those measures. As a consequence the LLM labeled it as not
match.Based on this manual inspection, the estimated accuracy of
our LLM-based evaluation approach is 99.5% for claim matching
and 100% for specification equivalence in the sampled cases.

5.4 Claim Extraction: Results

For each topic, we conduct a total of nine experiments. Eight of these
use the direct extraction pipelines (zero-shot and one-shot) and
the four LLMs. The ninth experiment uses the bootstrap extraction
pipeline, where the best-performing LLM from the direct extraction
experiments is selected to generate the in-context examples, and
Llama3-8B is used to extract claims from the full table.

Table 3 shows the results for each topic and each configuration.
We observe that the 1-shot setting consistently outperforms the
0-shot setting across all domains and models, with a margin of over
3.75%, and often with a much wider margin. This suggests that
providing a single example significantly improves the ability of
LLMs to extract claims effectively.

Performance across domains reveals a consistent trend: models
tend to achieve higher precision and recall in computer science
domains compared to those in the medical domain. One explanation
for this discrepancy might have to do with the nature of scientific
reporting. In computer science publications, performance metrics
are often simpler and typically can be understood independently
from each other. In contrast, medical publications report more com-
plex metrics. These often include the results of statistical analyses,
such as confidence intervals, hazard ratios, and significance indica-
tors, which often require multiple measures to be included in the
same vector, as we illustrated in the example shown in Figure 2.
Analyzing the results, we observed that in many cases, measures
that need to be reported in the same vector are extracted as separate
claims. These erroneous extractions lead to imprecise claims and,
as discussed in Section 5.3, significantly penalizes precision.

Precision and recall show some notable trends. GPT-40 con-
sistently achieves the highest precision and F1-score across most
topics and settings, particularly in the 1-shot configuration. On the
other hand, Llama3-70B tends to perform better in terms of recall,
particularly in the 1-shot setting, indicating its strength in retriev-
ing a broader set of relevant claims. The only exception for this is

5

SWe tested the direct extraction (1-shot) pipeline on this table with all models and
obtained 100% average claims precision and 49% average claims recall (Llama3-70B ex-
tracted measure-outcome vectors correctly, while the other models extracted Precision,
Recall and F1-score in the same claim for each row).



Table 3: Claim Extraction Performance of different LLMs across various extraction pipelines on each of the four topics. In
bold are highlighted the results of configurations that performed best on precision, recall, and F1-score for each topic. All the

experiments were invoked with temperature set to 0.1.

Topic Pipeline LLM Claims
Precision Recall F1-score
Text-to-SQL Direct Extraction (0-shot) GPT-4o0 0.81 0.80 0.81
Claude3-5 sonnet 0.78 0.60 0.68
Llama3-70B 0.77 0.67 0.71
Llama3-8B 0.31 0.38 0.34
Direct Extraction (1-shot) GPT-40 0.88 0.82 0.85
Claude3-5 sonnet 0.88 0.79 0.83
Llama3-70B 0.79 0.83 0.83
Llama3-8B 0.28 0.43 0.34
Bootstrap (1-shot) GPT-40 + Llama3-8B 0.67 0.71 0.69
Entity resolution  Direct Extraction (0-shot) GPT-40 0.84 0.75 0.79
Claude3-5 sonnet 0.80 0.71 0.75
Llama3-70B 0.80 0.71 0.75
Llama3-8B 0.34 0.36 0.35
Direct Extraction (1-shot) GPT-40 0.94 0.97 0.95
Claude3-5 sonnet 0.91 0.76 0.83
Llama3-70B 0.91 0.98 0.94
Llama3-8B 0.28 0.75 0.41
Bootstrap (1-shot) GPT-40 + Llama3-8B 0.43 0.72 0.54
Pancreatic cancer Direct Extraction (0-shot) GPT-40 0.78 0.49 0.60
Claude3-5 sonnet 0.69 0.47 0.56
Llama3-70B 0.64 0.52 0.57
Llama3-8B 0.49 0.35 0.41
Direct Extraction (1-shot) GPT-40 0.93 0.49 0.64
Claude3-5 0.88 0.51 0.64
Llama3-70B 0.83 0.53 0.65
Llama3-8B 0.48 0.26 0.34
Bootstrap (1-shot) Llama3-70b + Llama3-8B 0.66 0.40 0.50
HIV Direct Extraction (0-shot) GPT-40 0.62 0.55 0.58
Claude3-5 sonnet 0.54 0.60 0.57
Llama3-70B 0.46 0.49 0.47
Llama3-8B 0.37 0.33 0.35
Direct Extraction (1-shot) GPT-40 0.67 0.59 0.63
Claude3-5 sonnet 0.60 0.51 0.55
Llama3-70B 0.67 0.58 0.62
Llama3-8B 0.38 0.44 0.40
Bootstrap (1-shot) GPT-40 + Llama3-8B 0.39 0.54 0.45

the HIV topic, where GPT-40 and Llama3 70b present comparable
performances (0.59 vs 0.58).

A final observation concerns the Bootstrap pipeline. While the
use of an in-context example generated by a larger language model
offers considerable improvement over the zero-shot setting of the
corresponding smaller LLM (LLama3-8B), the overall performance
remains lower than that of the 1-shot direct extraction pipeline (us-
ing, e.g., GPT-40). This suggests that at least in its current configu-
ration, the LLama3-8B model may still face challenges in accurately
extracting claims, even when provided with relevant examples.

These results highlight the importance of model capabilities and
the challenges of balancing cost of model invocation and the quality
of the extracted results.

5.5 Specification Extraction: Results

Merely observing the performance of the various pipelines w.r.t.
claim extraction leaves open the question how each of them per-
forms w.r.t. specification extraction. The reason is that each claim



Table 4: Specifications extraction performance metrics (Precision, Recall, F1), with average specifications per matched extracted
claims and respective claimed ground truth claim, and data origin percentage. All results are from Direct Extraction (1-shot)

pipelines with the best performing LLM for each topic.

Topic Specifications Avg #specs in matched Origin
Precision Recall F1 Extracted claim GT claim %table %unstructured

Text-to-SQL 0.55 0.67 0.60 4.7 4.3 66% 34%

Entity resolution 0.86 092 0.89 3.5 3.5 27% 73%

Pancreatic cancer 0.53 0.68 0.59 4.9 4.7 71% 29%

HIV 0.50 0.83 0.63 4.9 4.3 45% 55%

extraction metric (precision, recall, F1) encapsulates the perfor-
mance of a pipeline on the extraction of subject (set of specifica-
tions) and outcome (measures and values). To evaluate the quality
of the extracted contextual information, we introduce a second
evaluation step based on the precision and recall of specification el-
ements (i.e., subjects). This evaluation was limited to specifications
from extracted claims that matched a claim in the ground truth.
Initially, we applied a simple heuristic to identify direct matches
between elements of the extracted claims and ground truth claims.
For unmatched elements, we used a large language model to as-
sess semantic equivalence, accounting for variations in wording
and effectively mapping specifications. To evaluate whether two
elements are equivalent the large language model is prompted with
both elements and the context of the table (hence, the table itself, its
caption and footnotes and paragraph). Importantly, recall was com-
puted only on ground truth claims that had a corresponding match
among the extracted claims rather than the whole set of ground
truth claims. This restriction allows us to isolate and accurately eval-
uate the results of the extracted specification elements only where
the claim was correctly identified. Including unmatched claims in
the recall calculation would conflate errors in claim extraction with
errors in specification extraction, making it difficult to distinguish
whether a low recall is due to missed claims or incomplete specifica-
tion extraction. By focusing only on matched claims, we can better
assess the granularity of specification extraction independently of
claim matching performance.

In Table 4, we present the evaluation results for specification
extraction, focusing on the top-performing pipelines for each topic.
For each topic, we also report the average number of specifications
found in matched extracted claims and ground truth claims. Ad-
ditionally, we include the percentage of specifications originating
from the table content (i.e., the HTML structure of the table) ver-
sus the unstructured text, which includes captions, footnotes, and
paragraphs.

The best performance is observed in the Entity Resolution topic,
with both precision and recall exceeding 85%. As shown in Table 1
and Table 2, the tables in this topic are primarily relational or
cross-tables, and are characterized by the fewest average number
of rows and a relatively small number of columns but the longest
paragraphs. Based on statistics, two out of three specifications
come from unstructured text, confirming that models are able to
extract relevant information from captions and paragraphs as well.
Furthermore, footnotes—an important source of supplementary

information—are much less commonly used in computer science
tables compared to those in the medical domain.

In contrast, the pancreatic cancer topic exhibits the lowest per-
formance. While its dataset contains some of the largest tables in
terms of row and column count, a more notable factor is its high
proportion of complex, nested tables—both in headers and indexes.
Approximately 70% of the specifications are derived from tables,
with only 30% coming from unstructured text. This suggests that
the overall complexity and structure of the tables may significantly
hinder the accurate extraction of specifications.

The HIV topic offers an almost reversed pattern: a majority of
specifications originate from unstructured text. Dataset statistics
reveal that this topic has the highest volume of characters in foot-
notes, which often provide rich experimental context—for instance,
describing population characteristics used in the reported results.
This reflects a broader trend in medical literature, where footnotes
are more integral to interpreting tabular data (for example, by re-
porting variables used in computing hazard ratios, or the actual
method used to compute a statistical measure). Results suggests
that information scattered in text are correctly identified and suc-
cessfully extracted as specifications, while a complex table layout
-such in the case of pancreatic cancer tables in our dataset- reduce
the capacity of the model to identify the specifications.

Finally, we offer a reflection on the precision results. Across
topics, the precision for specifications extraction is around 50%
(except for entity resolution). This relatively low precision indicates
that approximately half of the extracted specifications in matched
claims are either incorrect or not meaningful in the context of
specification evaluation. For example, manual inspection reveals
that models frequently extract metadata information like table
references (e.g., | table, 4], or | source, table 4), metric labels (e.g.,
Imetric type, accuracy|), or even specific results (e.g., | p-value,
0.0051).

5.6 Costs and Inference Time

For each LLM, in Table 5 we report a prospective of the costs for the
0-shot and 1-shot direct extraction on the tables of the whole dataset.
In particular, we report the total monetary costs, amount of output
tokens,® and inference time in minutes. It is worth noting that, since
the models are hosted by a third-party service, the inference time
might change due to update on the architecture to the third-party
service side (for example, they might improve the inference time).

®The number of input tokens is constant.



Table 5: Average costs, inference time and output tokens
amount, for one experiment, aggregated by LLM.

LLM Costs  Inference Output
Time Tokens

GPT-40 $0.130 5 minutes 23k

Llama3-8b $0.0016 2.6 minutes 18k

9.3 minutes 22k
10.3 minutes 16k

Llama3-70b $0.103
claude3-5 sonnet  $0.216

Table 6: Costs and number of output token comparison be-
tween Direct Extraction and Bootstrap pipelines across topics
for the mentioned experiment. For text-to-SQL, entity resolu-
tion and HIV the first pipeline runs with GPT-40, while the
bootstrap runs with GPT-40 for the first step and Llama3-8b
for the second step. For pancreatic cancer, GPT-4o is replaced
with Llama3-70b.

Topic 1-shot Bootstrap
Output Costs Output  Costs
tokens ($) tokens (%)

Text-to-SQL 25k $0.11 (4k + 19k)  $0.032

Entity resolution 21k $0.092 (2k +17k)  $0.008

HIV 23k  $0.101 (4k + 19k)  $0.032

Pancreatic cancer 23k $0.105 (8k +45k) $0.0715

Some conclusions can be drawn considering the costs and the
results. GPT-4o offers the best balance of performance, cost, and
inference time, making it the most efficient and effective choice.
Llama3-70b provides similar quality at a slightly lower cost but
with longer inference time, but has the advantage of possibly being
run locally, further reducing the costs. The quality of the results
produced by Claude3-5 sonnet is similar, but it is more costly and
slower. Llama3-8b is extremely fast and cheap but its quality per-
formance is poor.

Table 6 shows the comparison of output token usage and costs
of bootstrap extraction against the extractions made by the same
models used in the direct extraction experiments. The input tokens
for Bootstrap pipelines are roughly double the number of tokens
used in Direct Extraction pipelines (as the context of the table needs
to be prompted two times). The output tokens amount is reduced
by at least 65% in the worst case (pancreatic cancer) and up to 90%
in the best case (entity resolution).

6 CONCLUSIONS AND FUTURE WORK

Fine-grained claim extraction from scientific papers can enable
in-depth analysis of the literature, uncover the causes of apparent
contradictions across studies, and inspire new research directions.
However, this task is particularly challenging, due to the syntac-
tic and semantic heterogeneity in how findings are represented
across papers. While large language models (LLMs) show promise

in addressing these challenges, our findings suggest that more re-
fined methodologies are necessary to effectively capture the full
spectrum of relevant information.

To evaluate the generality of our results across domains and
topics, we plan to improve the benchmark, expanding both the
dataset and its corresponding ground truth including more papers
and tables for additional domains and topics.

Our results show that smaller models such as LLaMA3-8B, de-
spite lower baseline performance, benefit significantly from our
bootstrap-based extraction pipelines. This opens up promising op-
portunities to develop more lightweight yet effective claim extrac-
tion systems. We also plan to explore fine-tuning strategies for both
LLaMA3-8B and LLaMA3-70B to enhance their specialization in
the claim extraction task.

One of the long-term goals of the DESIREE project is to enable
fine-grained, data-driven analyses that accelerate scientific discov-
ery. Achieving this vision requires overcoming significant chal-
lenges, particularly in aligning and querying claims across a highly
heterogeneous body of literature. The variability in lexicons, repre-
sentations, and value ranges across papers complicates the process
of matching claims. For example, different studies may use varying
terminology to describe the same concepts, or include a wide range
of measures where only a subset is relevant to a query.

While claims frequently appear in tables, they are also con-
veyed through other visualizations such as plots and charts. Recent
advances in deep learning are enabling the extraction of struc-
tured data from these visual formats. Tools like DEPLOT [36] and
MaTtcHA [37], both based on the P1x2STrucT [32] framework, can
effectively convert plots and charts into tabular representations: we
plan to leverage these tools to extend the extraction of claims from
papers including those presented in visual format. Finally, we plan
to extend our evaluation by leveraging the capabilities of recent
multimodal LLMs, which open new opportunities for advancing
the claim extraction task.
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