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ABSTRACT

Automatic table header recognition remains a challenging task due
to the diversity of table layouts, including multilevel headers, non-
standard formatting, and merged cells. In this paper, for the first
time, we propose a methodology to evaluate the performance of
large language models on this task. Our study covers eight differ-
ent models and six strategies for prompt engineering with zero-
shot and few-shot settings, on a prepared dataset of 237 tables. The
results show that model size critically affects accuracy: large mod-
els (405b parameters) achieve the F1 score 80-85%, while small ones
(7b parameters) show the F1 score 6-30%. Complicating prompts
with step-by-step instructions, search criteria, and examples that
improves the results only for large and medium models, while for
small ones it leads to degradation due to context overload. The
greatest errors occur when processing tables with hierarchical head-
ers and merged cells, where even large models lose accuracy. The
practical significance of this paper lies in identifying optimal con-
figurations of prompts for different types of models. In particular,
short instructions are effective for large models, and step-by-step
instructions with search criteria are effective for medium mod-
els. This research opens up new possibilities for creating universal
tools for automatic analysis of table headers.
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1 INTRODUCTION

Tables are an important means for presenting structured data in
scientific publications, financial reports, web documents, and other
fields, but their automatic processing is hindered by the diversity
of structures, including multilevel headers and merged cells [1, 2, 4,
19]. Modern approaches to table structure recognition, including
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neural network-based methods [8, 14, 25], as well as pre-trained
language models based on the Transformer architecture [3, 9, 10,
15, 22, 26, 28], show progress in this field, but face limitations when
working with hierarchical headers and noisy data. The emergence
of large language models (LLMs) has opened up new possibilities
for processing tabular data due to their ability to more deeply an-
alyze the context and semantics of data [5, 20, 23]. However, their
effectiveness depends on prompt engineering strategies, which re-
main understudied for the task of table header recognition.

In this paper, we address the task of table header recognition
using LLMs and prompt engineering. Our contributions include:

(1) For the first time, an experimental evaluation of the per-
formance of LLMs in the context of solving the problem of
table header recognition is obtained.

(2) The influence of different prompt types, LLM sizes, and
structural complexity of tables on the accuracy of header
recognition is studied.

2 RELATED WORK

In the field of automatic table understanding [2, 16, 19], the main
problems of table processing are considered such as table detec-
tion (searching and identifying tables in the original information
source), table structure recognition (defining rows, columns, and
cells, as well as headers) and semantic table interpretation (an-
notating table elements with concepts from the knowledge graph).

There are two main directions to the development of methods
to solve the problems of table structure recognition:

e Rule-based methods: These methods are based on the
rules of analysis and interpretation of tables [6, 17, 24].
Such solutions typically do not cover the full diversity of
table layouts, formatting, and content. They are limited to
conventional layouts, atomic cells, and flat headers, ignor-
ing cases where these assumptions do not hold.

e Data-driven methods: Such solutions can use both tra-
ditional machine learning-based methods such as the sup-
port vector machine (SVM) and random forest [7], or clus-
ter analysis [18], and deep learning-based methods [8, 14,
25] including as pre-trained language models such as TSR-
Former [15], TableFormer [26], TableVLM [3], VAST [9],
TATR [22], GTE [28], and TSR-DSAW [10].

Recently, approaches based on LLMs have emerged (e.g., Table-
GPT [13] or TableLlama [27]), which are increasingly being used to
solve various tabular tasks using prompt engineering and contex-
tual learning. The representation of a prompt for a table can play
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an important role in the ability of models to process tabular data. In
particular, the ability of LLMs to understand the structure of tables
with different layouts using the prompt engineering technique is
investigated in [20, 23]. In addition, a performance evaluation is
provided for individual table presentation formats and the impact
of noise in the data. However, such approaches are aimed only at
structural tasks that relate to the identification of rows, columns,
and cells by specified indexes, omitting the processing of headers.
Other successful examples are approaches [11, 12] that focus on
the ability of LLMs to understand the semantics of tabular data,
making one of the key contributions to research on column annota-
tion and the relationships between them using prompt engineering.
However, such approaches are aimed at mapping table columns
(cell values with data) to semantic types (classes and properties)
from the target knowledge graph (e.g., DBpedia or Wikidata) and
are not able to determine metadata (headers) inside the table itself.

3 METHODOLOGY

This study evaluates the performance of LLMs in the task of table
header recognition. Specifically, we explore the following aspects:
1) How does prompt complexity and detail affect the model’s abil-
ity to accurately identify headings? 2) How does the number of LLM
parameters affect the accuracy of table header recognition? 3) How
does the structural complexity of tables (e.g., the presence of merged
cells, multilevel headers, or non-standard header placement) also af-
fect recognition accuracy?

The general scheme of our methodology is presented in Figure 1.
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Figure 1: The general scheme of the proposed methodology,
that supports controlled ablation of: (1) LLM scale effects,
(2) structural table complexity (hierarchical headers/merged
cells), and (3) prompting strategies. Our methodology estab-
lish a reproducible benchmark for table header recognition.

3.1 Models

We selected eight models with varying numbers of parameters to
study the ability of LLMs to recognize table headers. The models
are divided into three categories: small (<70 billion parameters),

medium (>70 and <100 billion parameters), and large (>100 bil-
lion parameters), which determines the impact of model size on
performance. Table 1 lists the LLMs with their brief characteris-
tics.

Table 1: LLMs used in the study. We categorized 8 state-of-
the-art LLMs by parameter scale (Small: 7-27B; Medium: 70—
72B; Large: 405B), establishing a foundational framework
for model capability analysis. The selection encompasses
cutting-edge open-source (e.g., Llama 3, Gemma) and dis-
tilled models (DeepSeek-R1), enabling systematic investiga-
tion of scaling ways in tabular data understanding.

Model name # Parameters

Small

Mistral-7B-Instruct-v0.3 7 billion
Llama-3.1-8B-Instruct 8 billion
Mistral-Small-24B-Instruct-2501 24 billion
Gemma-2-27B-it 27 billion
Medium

Llama-3.3-70B-Instruct-Turbo 70 billion
DeepSeek-R1-Distill-Llama-70B 70 billion
Qwen2-72B-Instruct 72 billion
Large

Llama-3.1-405B-Instruct 405 billion

3.2 Dataset Pre-processing

Our study employs the large-scale PubTables-1M corpus that con-
tains nearly one million tables extracted from scientific articles
available in the PubMed Open Access archive [21]. This corpus
provides rich annotations for table discovery, table structure recog-
nition, and functional analysis tasks, including information about
cell layout, content, and roles (e.g., headers, cell values with data).

We prepared a dataset including 237 tables from the PubTables-
1M corpus with various table structures, in particular:

e 122 simple tables contain headers in the first row or col-
umn.

e 95 medium tables contain header cells within the first
three rows (there may be merged cells and a hierarchical
structure).

e 20 complex tables contain non-standard multilevel head-
ers (there may be merged cells and a hierarchical structure),
where header cells are located both in rows (they can be lo-
cated below the third row) and in columns.

The selected tables were not intentionally noised. The key sta-
tistics for our dataset are provided in Table 2. According to [20],
when solving various structured tabular tasks, LLMs better un-
derstand the DataFrame format (a JSON-like format used in the
pandas library), which has shown the highest efficiency in exper-
iments. Thus, we used this format for the subsequent processing
and transferring of tabular data to our models.



Table 2: Statistics of the prepared dataset including 237 ta-
bles from the large-scale PubTables-1M corpus. The tables
in this dataset are divided into three types: simple, medium
and complex.

Statistics Value
Total number of tables 237
Number of simple tables 122
Number of medium tables 95
Number of complex tables 20
Number of columns 1293
Average number of columns per table 5,46
Number of rows 3457
Average number of rows per table 14,59
Total number of cells 20353
Number of header cells 1546
Number of data cells 18807
Number of merged cells 602

3.3 Prompting Strategies

We used general guidelines! for writing prompts, but made these
prompts specific to our task, since they include search criteria and
instructions for header detection. In particular, prompt with step-
by-step instructions provides a structured approach, guiding the
model to a systematic analysis of the table, which can improve
recognition accuracy. The prompt with search criteria takes the
instructions further by providing the model with clear criteria to
identify headers, which is especially useful for complex tables. We
have also included zero-shot and few-shot settings in our prompts.
An example of a prompt using the described format is found in Fig-
ure 2.

Thus, we designed various strategies for LLMs prompting in Ta-
ble 3.

Table 3: Main characteristics of prompting strategies. We
systematized 6 prompting configurations from zero-shot to
few-shot (1-3 table examples), augmented with algorithmic
step-by-step instructions (+int) and header search criteria
(+crit). ’N/A” denotes not table example in prompt.

# Prompt type Example type

1 zero-shot N/A

2 zero-shot+int N/A

3 zero-shot+int+crit N/A

4 1-shot+int+crit header in the first row
5  2-shot+int+crit  headings on top and left
6 3-shot+int+crit hierarchical headers

!https://github.blog/ai-and-ml/generative-ai/prompt-engineering- guide- generative-
ai-1lms/

You are a specialist in analyzing complex tables.
Your task is to identify all headers in the given table: {table}.

Please follow the detailed algorithm below:

1. Visually examine the table to understand its structure.

2. Identify potential headers based on summarizing text and formatting.

3. Analyze the positioning of headers (top, left, right).

4. Generate a JSON response with the coordinates of the identified headers.
Header identification criteria:

« Semantic analysis to detect keywords indicating categories.

* Positional analysis to determine the typical placement of headers.

e Structural pattern analysis (e.g., repeated header rows or columns).

« Contextual analysis of relationships between cells.

* Metadata analysis (such as font size, alignment).

* Hierarchical analysis to detect multi-level headers.

Example of a table with recognized headers:
{table example}

Figure 2: An example of prompt pattern with step-by-step in-
structions, header identification criteria, and table instance
(1-shot).

4 RESULTS AND DISCUSSION

We developed a special environment for conducting experiments
in Python. We used the LangChain library? and the Together.ai
API3. All requests to LLMs were made through this API with a gen-
eration temperature of 0.0 to ensure the stability and reproducibil-
ity of the results. The prepared tabular dataset, all types of prompts,
and the experiment results are published in an open repository on
GitHub*.

Standard metrics were used to evaluate header recognition qual-
ity: precision, recall, and F1 score. The distribution of F1 scores across
models is shown in Figure 3.

Sequential processing of 11376 queries (237 tables x 6 prompt
types x 8 LLMs) took about 49.3K seconds (13.7 hours). Switching
to parallel processing in five threads reduced this time to 9.8K sec-
onds (2.7 hours), which accelerated query processing almost five
times.

Experiments demonstrated that model size significantly affects
performance. The large model (405B) achieved the F1 score 82-84%,
while the small models (7-8B) showed the F1 score 6-70%. The Llama-
3.1-8B, Qwen2-72B and Mistral-7B models demonstrate the great-
est instability when using complex prompts. Instead of the expected
quality improvement through step-by-step instructions, search cri-
teria or a few-shot settings, these models showed the opposite re-
sult.

Key observations from the model analysis:

o The negative impact of complex prompts: Complex in-
structions sometimes misled the model, while the overall
F1 score decreased.
https://www.langchain.com/

Shttps://www.together.ai/
“https://github.com/YRL- AIDA/Table_Header_Recognition
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Figure 3: Heatmap of F1 scores across model-prompt con-
figurations. Evaluation demonstrates the decisive impact of
model scale on header recognition accuracy. Large models
(405B) achieve peak performance (F1: 80-85%) even with min-
imal prompts. Medium models (70B) show significant gains
(+15% F1) from criteria-augmented prompts, while small
models (7B) exhibit severe degradation (F1: 6-30%) due to
context overload. Thus, we highlight the inflection point
(r70B parameters) for reliable in-context learning in tabu-
lar domains.

o Non-standard response format: LLMs often returned not
the coordinates of the header cells, but their contents, de-
spite explicit instructions in the prompts to return the coor-
dinates of the header. This is probably due to the architec-
tural specificity of transformer-based generative models,
which are optimized for predicting the next tokens rather
than numeric coordinates; therefore, they extract and re-
turn the text header value rather than the position. In addi-
tion, LLMs are not specialized for this task and were trained
using basic tables with a header in the first row; therefore,
they tend to use this pattern. To compensate for such incon-
sistent responses, we implemented an additional step that
provides text values are obtained by searching the source
table and matching them with coordinates. This fix par-
tially corrected this error, which was reflected in the final
scores.

e Header omission in complex tables: LLMs suffered sig-
nificant performance losses when the headers were not in
the first row. Thus, almost all models showed a low recall
for medium and complex tables, skipping true headings
located outside the first row. Large and medium models
handled such cases better, but still showed a noticeable de-
crease in the F1 score compared to simple tables.

o False positive header identification: LLMs exhibit a ten-
dency to misclassify cells with text content as headers, es-
pecially in dense tables (such tables tend to contain the

maximum amount of information in a minimal area with-
out empty cells and may also lack obvious visual separa-
tors), resulting in reduced precision. An example of such a
table is shown in Figure 4.

e Coordinate identification errors: Errors in determining
the header boundaries are prevalent in tables containing
merged cells or irregular layout, causing a decrease in the
F1 score.

Table 2: Hematologic toxicity. Number of patients affected with
each side effect are listed in the corresponding rows.

OEE =

Leukopedia 7 1 0 1

Anaemia 3 1 0 0

Figure 4: An illustrative example of a simple table where the
Llama-3.3-70B model is wrong in automated header recogni-
tion. Ground-truth headers (highlighted in green) are com-
pared with model-predicted headers (highlighted in red) for
the Llama-3.3-70B model under a zero-shot-int+crit prompt.
Despite the high overall efficiency of this model (F1: 75%),
this dense tabular structure with a minimal visual separa-
tors and header-like numeric values in data cells lead to
critical precision errors. Specifically, the model mistakenly
attributes two data cells in the first column (*Leukopedia”
and "Neutropenia”) as a header while overlooking the true
header in the first cell of the last column.

5 CONCLUSION

In this paper, we investigated the capabilities of LLMs to recognize
table headers with different structural layouts. The experiments
were carried out on a set of 237 tables selected from the large-
scale PubTables-1M corpus. Our study demonstrates the potential
of LLMs in table header recognition, highlighting the importance
of model size and prompting strategies. Future work will focus on
expanding the dataset, including tables on low-resource languages,
and more examples of tables with complex structures. We plan to
conduct experiments on existing table header detection datasets
from the related work to make the results directly comparable and
to explore hybrid approaches that combine LLMs with computer
vision methods[9].
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