
Relationship Detection on Tabular Data Using Statistical Analysis
and Large Language Models

Panagiotis Koletsis
Harokopio University

Athens, Greece
pkoletsis@hua.gr

Christos
Panagiotopoulos
Harokopio University

Athens, Greece
chris.panagiotop@hua.gr

Georgios Th.
Papadopoulos

Harokopio University
Athens, Greece

g.th.papadopoulos@hua.gr

Vasilis Efthymiou
Harokopio University

Athens, Greece
vefthym@hua.gr

ABSTRACT
Over the past few years, table interpretation tasks have made sig-
nificant progress due to their importance and the introduction of
new technologies and benchmarks in the field. This work experi-
ments with a hybrid approach for detecting relationships among
columns of unlabeled tabular data, using a Knowledge Graph (KG)
as a reference point, a task known as CPA. This approach leverages
large language models (LLMs) while employing statistical analy-
sis to reduce the search space of potential KG relations. The main
modules of this approach for reducing the search space are domain
and range constraints detection, as well as relation co-appearance
analysis. The experimental evaluation on two benchmark datasets
provided by the SemTab challenge assesses the influence of each
module and the effectiveness of different state-of-the-art LLMs at
various levels of quantization. The experiments were performed, as
well as at different prompting techniques. The proposed methodol-
ogy, which is publicly available on github, proved to be competitive
with state-of-the-art approaches on these datasets.

VLDBWorkshop Reference Format:
Panagiotis Koletsis, Christos Panagiotopoulos, Georgios Th. Papadopoulos,
and Vasilis Efthymiou. Relationship Detection on Tabular Data Using
Statistical Analysis and Large Language Models. VLDB 2025 Workshop:
Tabular Data Analysis (TaDA).

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/panagiotis-koletsis/cpa4.

1 INTRODUCTION
Understanding the structure, semantics, and contents of tabular
data is a foundational task in data integration, information retrieval,
and Knowledge Graph (KG) population. An important step in this
process is determining how columns in a table relate to one an-
other. This problem is already difficult when column headers exist
in a table (due to data heterogeneity), but it becomes particularly
challenging, even for human experts, when the table lacks mean-
ingful headers. The Column Property Annotation (CPA) task of the
SemTab challenge [10] addresses this problem by aiming to identify
semantic relationships between columns, such as “authorOf” or
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“locatedIn”, as defined in a reference KG. This task is especially
challenging in practice, due to the absence of informative column
names, the broad and overlapping semantics of KG properties, and
the large search space of potential relationships (e.g., there are
roughly 3,000 properties in DBpedia and 1,500 in Schema.org).

Semantic table interpretation approaches that rely on Large lan-
guage models (LLMs) have been recently proposed, with promising
results [2, 5, 8]. However, LLMs are also prone to hallucinations
and the so-called knowledge injection has been suggested as a
means of countering this problem [15]. Therefore, in this prelimi-
nary work, we explore the use of data analysis to detect constraints
that will reduce the search space of candidate relationships between
columns, this way reducing the chances of errors, before prompting
an LLM for the CPA task. Specifically, we detect domain and range
restrictions of candidate relationships from the target KG, which,
in our case is Schema.org, and combine them with domain and
range restrictions detected in an input table. Moreover, we extract
co-appearance statistics from the training set and exploit them to
incrementally reduce the candidate relationships found in a table,
as we detect some first relationships for that table. Finally, we ex-
plore several LLMs and prompting techniques and evaluate their
performance.

In summary, the contributions of this work are the following:
• A hybrid approach for CPA incorporating LLMs and statis-

tical analysis.
• An experimental evaluation of several low-billion-parameter

LLMs, with different quantization levels and prompting
techniques.

• Ablation studies to define the impact of each of the modules
of our hybrid approach.

• An open-source solution to CPA that is publicly available
on https://github.com/panagiotis-koletsis/cpa4.

2 RELATEDWORK
The challenge of understanding improperly stored data has been
recognized for many decades, leading to the exploration of new
solutions, mostly based on statistics and machine learning [20, 21],
as well as lookup-based and LLM-based approaches [4].

Statistical-based approaches. One of the foundational works
in this area [3] tackled the following problems: schema auto-complete,
synonymfinding and joining schemas by statistical approach. Schema
auto-complete was possible by incorporating co-appearance and
accounting probabilities, for example, when the user enters a make,
the system suggests model, year, price, mileage, and color. Syn-
onym finding was possible by knowing that synonyms would never
co-appear in the same schema and that they would have similar
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Figure 1: Methodology Overview.

content. Finally, they joined schemas by clustering similar ones.
Our co-appearance statistics are inspired by this work.

Look-up based approaches.MTab [17], a work that dominated
the SemTab challenge in its first few years, utilized entity look up by
searching across local indices built on the target KG (e.g., DBpedia).
Additionally, MTab introduced a literal matching approach to align
table cell values with the corresponding properties of KGs [17].
DAGOBAH [9], a system that later dominated the SemTab chal-
lenge, further explored the above logic introducing preprocessing
steps such as identification of orientation detection, header de-
tection, key column detection and column primitive typing while
also introducing a pre-scoring algorithm. Some of those ideas were
introduced in works that preceded SemTab (e.g., [7, 13, 19]).

LLM based. With all the advancements of LLMs in the past few
years, researchers explored their capabilities in table interpretation
tasks. For instance, [2] used a GPT3 model incorporating few-shot
and zero-shot learning for solving SemTab tasks. More advanced
works further explore even the fine tuning of LLMs for table inter-
pretation tasks [14] following even a foundational model approach
for table interpretation [22].

Hybrid. Interestingly, some hybrid works try to leverage the
privileges of the aforementioned approaches, combining, for ex-
ample, LLMs and look-up based techniques [8]. TorchicTab [5]
employs a dual-system approach for semantic table annotation,
combining heuristics with classification. The heuristic component,
TorchicTab-Heuristic, uses RDF graphs like Wikidata for candidate
lookup and ranking viamultiple search strategies and semantic simi-
larity, handling diverse table structures through contextual analysis
and majority voting. The classification component, TorchicTab-
Classification, treats column type and property annotation as a
multi-class task using the DODUO language model (a finetuned
BERT [6]) and sub-table sampling to manage token limits and pre-
serve context. This combined approach achieved top performance
in the SemTab 2023 challenge.

3 METHODOLOGY
In this section, we describe ourmethodology, following the overview
presented in Figure 1.

Base. In the base architecture, the table, the column of inter-
est, and the complete list of possible relations are parsed into the
template and subsequently processed by the LLM (skipping the
Analysis and Dictionaries of Figure 1). If the output does not match
the desired format (i.e., a single word from the relation list), a simple

yet effective technique is applied by parsing the output of the first
prompt and asking for a single word of interest. If this fails again,
then we just re-ask a different model with the initial prompt.

Domain Attributes Analysis. Rather than passing the entire
list of possible relations found in schema.org, the domain attribute
analysis focuses on identifying a smaller, more relevant set of rela-
tions for each entity type. This is possible because each data point
in the training set table starts with the corresponding domain. In
order to achieve our goal, we scan the training set and append, in
a dictionary containing all the property types, the corresponding
relation to the corresponding key on the dictionary.

Range Attributes Analysis. Building on the initial idea, we
further reduce the search space of relations by filtering them based
on their primitive type. The proposed module for attribute range
analysis scans the training set and reads the first element of the
table for the corresponding column in the data point, then classifies
it into one out of four types - String, Number, Date, and URL -
using parsers and regular expressions. The produced dictionary has
one major drawback: due to inconsistencies in the dataset and the
date parsing process, it contains some outliers. For example, some
relations may appear in more than 2-3 primitive types. In order
to improve this module, we incorporate a threshold for excluding
rarely used relations. This threshold discarded all the relationships
appearing less frequently than 5 % of the most frequent one. That
way, some outliers contained by the dataset are not accounted by
the LLM and therefore, do not add noise to the LLM prompt.

Co-appearance Analysis. The idea behind the co-appearance
module is that relationships that do not co-appear in the same table
in the training set are not very likely to co-appear in the same table
in the test set, either. For each relationship of a specific domain,
we build a corresponding dictionary (e.g., we build a dictionary for
the property Book.name and another one for Person.name). This
dictionary will contain the other relationship that co-occur with
the initial relation in the same table, hopefully further narrowing
the search space. In addition, while parsing the table’s columns,
the LLM’s predictions for the previous columns are also removed
from the candidate set of the next columns, since we assume that a
relation only appears once per table. This technique has one major
drawback: in order to be successful, the initial prediction of the
model must be correct. Otherwise, the progressively smaller search
space of candidate relations for the next column will be incorrect,
propagating the errors of previous detections and asking the model
to choose a relation from a list that does not contain the correct
one. In this preliminary approach, we scan columns from left to
write, although other approaches (e.g., from the most likely to be
annotated correctly to the least likely) are also worth exploring.

Inference phase. During the inference phase, the domain of
the table is first extracted (i.e., the Table Topic Detection - TD -
task of SemTab). Then, for each column in the ground truth, its
type is identified by the aforementioned process (R). Finally, the
intersection of these two lists is provided in the prompt template. It
is important to mention that (a) we take a sample of 500 rows from
each table for our analyses, and that (b) the provided script runs
dynamically and produces all the dictionary without any manual
effort. This step takes place offline with a separate script, since it
only makes sense to run once per dataset.
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4 EXPERIMENTS
In this section, we describe the experimental setting and provide
and analyze the experimental results of our study.

4.1 Experimental Setting
Hardware-Software. All the experiments were performed on a
single GPU (RTX 3080 Ti with 12GB VRAM). The access to the
models was achieved through Ollama (v.0.6.6) and Langchain.

Models. The focus was primary with the latest models from
Ollama ranging from 12 to 72 billion parameters and from 2 bit
to 4 bit quantization. Models such as DeepSeek-r1, Gemma3, phi4,
Llamma3.3 are tested and Qwen2.5:32B-Instruct-Q3_K_L was
evaluated in greater detail.

Datasets. In our experiments, we employ the Round 1 and
Round 2 SemTab 2023 SOTAB [12] datasets for the CPA task, with
schema.org as their target KG. The Round 1 dataset consist of 50 pre-
defined relations originating from 7 different domains. The Round
2 dataset follows the exact same format as the R1 dataset, but it
consists of 105 relations from 17 distinct domains. In addition, it
contains almost three times the size of data points compared to R1.

Evaluation metrics.We employ the standard metrics used in
the evaluation of SemTab, i.e., Precision, Recall, Macro_F1, and
Micro_F1, as well as execution time in seconds. To ensure that all
methods are evaluated consistently, the SemTab challenge provides
an evaluator Python script.

Base. Different LLMs with varying levels of quantization were
tested. As shown in Table 1, the Qwen family of models demon-
strated superior results. This was likely due to the fact that Qwen
models were specifically trained to understand and produce struc-
tured formats. Qwen-32B had fewer failed iterations, indicating
better formatted output. Unexpectedly, LLaMA 3.3 failed to be com-
petitive despite its larger size. Qwen2.5-72B Q2 showed inconsistent
results compared to Qwen2.5-32B Q3 and had significantly more
failed iterations, suggesting that distillation affected its ability to
handle structured output. The other models were not competitive
and exhibited increased execution time due to the activation of the
structuring component.

Domain (D). In both datasets (Table 1 and Table 2), domain
extraction showed the most significant and clear improvements,
indicating that a reduced and more relevant search space helps the
LLM perform better. Additionally, both datasets exhibited a lower
failure ratio and execution time. In the case of R1, a 2.5% reduction
in execution time per iteration was observed compared to base. This
suggests that fewer choices led to more efficient decision-making
by the model. In the R1 dataset, the Micro_F1 score increased by
16.7%, while in R2, the same metric improved by 17.3%.

Range (R). On its own on the R1 dataset, it increased all the
metrics spotted compared to base. Most notably the precision was
increased by 6 %. In the R2 dataset, all observed metrics declined.
However, similar to the Domain approach, a reduction in execution
time was noted on both datasets.

Co-Appearance (C).When used alone, it had a notably nega-
tive impact, as any initial error made by the LLM was propagated
through subsequent iterations. The results confirm this behavior,
showing a significant drop in performance metrics and a substantial
increase in the failure rate.

Table 1: CPA on R1 dataset. For approaches, D: Domain, R:
Range, C: Co-App, RD: Range & Domain, RDC: Range & Do-
main & Co-App, 𝑅𝐷𝐶𝑝 : Range & Domain & Co-App(prec=1).
For LLMs, L: llama3.3:70b-instruct-q2_K, G: gemma3:12b,
Q32: qwen2.5:32b-instruct-q3_K_L, Q72: qwen2.5:72b-
instruct-q2_K, R1: deepseek-r1:14b, Φ: phi4:14b.

Approach Macro_F1 Micro_F1 P R Time(s) LLM

Kepler-aSI [1] - 0.235 0.230 - - -
Base 0.346 0.435 0.483 0.363 9.6 L
Base 0.638 0.703 0.687 0.649 11.3 Q72
Base 0.309 0.372 0.440 0.310 1.3 G
Base 0.313 0.381 0.455 0.288 10.9 R1
Base 0.202 0.453 0.249 0.206 6.46 Φ

Base 0.634 0.687 0.706 0.662 3.9 Q32
R 0.679 0.694 0.748 0.681 3.8 Q32
D 0.771 0.802 0.801 0.792 3.8 Q32
C 0.054 0.232 0.092 0.051 4.1 Q32
RD 0.792 0.812 0.834 0.801 3.8 Q32
RDC 0.770 0.796 0.803 0.769 3.9 Q32
𝑅𝐷𝐶𝑝 0.802 0.820 0.845 0.810 3.7 Q32
𝑅𝐷𝐶𝑝 0.441 0.575 0.544 0.428 1.6 G
𝑅𝐷𝐶𝑝 0.185 0.339 0.248 0.179 7.5 R1
𝑅𝐷𝐶𝑝 0.227 0.566 0.269 0.216 11.0 Φ

Range & Domain (RD). The combination of type and domain
analysis yielded the best results in both datasets, despite the fact that
type analysis alone had a mixed impact. In the R1 dataset, Micro_F1
increased by an additional 1.2% compared to using domain analysis
alone, and by 18.2% compared to the base. In the R2 dataset, a
further improvement by 5% in Micro_F1 was observed, along with
a 6.5% increase in precision. Notably, micro_f1 improved by 23%
compared to the base. Although the proposedmethod didn’t achieve
SOTA performance, it has a major advantage over TorchicTab and
MUT2KG. This advantage is that it does not require any finetuning
unlike the above mentioned methods.

Range & Domain & Co-Appearance (RDC). The negative im-
pact of the co-appearance module carried over into the combination
of type, domain, and co-appearance, resulting in decreased perfor-
mance across all observed metrics, as well as increased execution
time and failure rate in both datasets.

Range & Domain & Co-Appearance based on precision
(𝑅𝐷𝐶𝑝 ). For this experiment, we tested to activate the co-appearance
module only on the relations that the model was able to identify
with precision 100 % in the Range & Domain experiment. This
is meaningful because 100 % precision means that whenever the
model spot this relation identifies it correctly. In order to achieve
this it was calculated a per class score on validation set. Later it was
activated manually only on these relations spotted by the LLM. In
the R1 Dataset micro_f1 score was increased by 1% indicating that
this approach works. Unfortunately in the R2 dataset this approach
failed to improve the results, but compared to the approach with
the full co-appearance micro_f1 was increased by 15%.

Prompt Ablation. On the R1 dataset, unexpectedly, the best
micro_F1 score resulted from the exclusion of CoT. Excluding the
example also had a positive effect. Although this was initially con-
sidered unexpected, it can be explained by the fact that R1 is easier

3



Table 2: CPA on R2 dataset. For approaches, D: Domain, R:
Range, C: Co-App, RD: Range & Domain, RDC: Range & Do-
main & Co-App, 𝑅𝐷𝐶𝑝 : Range & Domain & Co-App(prec=1).
For LLMs, G: gemma3:12b, Q32: qwen2.5:32b-instruct-q3_K_L,
R1: deepseek-r1:14b, Φ: phi4:14b.

Approach Macro_F1 Micro_F1 P R Time(s) LLM

TSOTSA [11] - 0.235 0.434 - - -
Anu - 0.623 0.791 - - -

TorchicTab [5] - 0.871 0.880 - - -
MUT2KG [16] - 0.793 0.848 - - -
DREIFLUSS [18] - 0.174 0.320 - - -

Base 0.559 0.630 0.655 0.575 4.2 Q32
R 0.542 0.608 0.622 0.565 4.1 Q32
D 0.704 0.739 0.756 0.717 4.0 Q32
C 0.026 0.146 0.042 0.026 4.3 Q32
RD 0.756 0.776 0.797 0.763 3.9 Q32
RDC 0.478 0.654 0.525 0.474 4.7 Q32
𝑅𝐷𝐶𝑝 0.685 0.749 0.734 0.695 4.1 Q32
RD - - - - - G
RD 0.137 0.296 0.184 0.132 7.9 R1
RD 0.200 0.548 0.239 0.192 27.5 Φ

Table 3: Ablation study on prompts. RD: Range & Domain,
𝑅𝐷𝐶𝑝 : Range & Domain & Co-App (precision=1), E: Example,
E+COT: Example + COT.

Approach Macro_F1 Micro_F1 P R Time(s) Without

Dataset: R1
𝑅𝐷𝐶𝑝 0.766 0.799 0.816 0.773 4.0 ALL
𝑅𝐷𝐶𝑝 0.813 0.835 0.844 0.818 3.7 COT
𝑅𝐷𝐶𝑝 0.786 0.809 0.839 0.794 3.7 Role
𝑅𝐷𝐶𝑝 0.805 0.826 0.845 0.816 3.7 E
𝑅𝐷𝐶𝑝 0.782 0.796 0.834 0.791 3.7 E+COT
𝑅𝐷𝐶𝑝 0.802 0.820 0.845 0.810 3.7 -

Dataset: R2
RD 0.728 0.736 0.798 0.729 3.8 ALL
RD 0.691 0.729 0.755 0.698 4.0 COT
RD 0.722 0.763 0.775 0.729 3.9 Role
RD 0.688 0.718 0.758 0.697 3.9 E
RD 0.711 0.724 0.786 0.716 3.9 E+COT
RD 0.756 0.776 0.797 0.763 3.9 -

than R2 and the additional information may have confused the
model. An overall improvement of 4.5% in the micro_F1 score was
observed using prompt engineering. On the R2 dataset the prompt
with role, example and COT incorporation achieved the best re-
sults. Each prompt part exclusion had negative impact as well. In
total using prompt engineering the micro_f1 score was increased
by 5.4%. Although LLMs are improving in zero-shot performance,
prompt engineering remains an easy way to boost results. How-
ever, it should be validated, as incorporating a seemingly beneficial
component into the prompt may, in fact, have a negative impact.

Comparison of LLMs. Different models were tested under var-
ious quantization levels and parameters on both the base and final
setups. On R1, DeepSeek and Phi-4 struggled with structuring, acti-
vating the structuring component, which led to higher execution

Figure 2: The main prompt that we used in this work, with
its different parts highlighted in different colors (see Prompt
Ablation).

time and failure rates. Gemma3 performed better in terms of exe-
cution time but was still less competitive than the proposed model.
On R2, results declined across all models, indicating higher dataset
complexity. While Phi-4 outperformed DeepSeek in output quality,
it required over four times higher execution time. Gemma3 failed
to complete the dataset due to frequent unexpected token errors,
leaving its results blank.

5 CONCLUSION
In this work, a hybrid LLM-based and statistical analysis-based
approach was explored for the CPA task. The employed LLMs
varied in parameter size and quantization levels. Three main com-
ponents were explored for the reduction of the search space of
relationships: Domain, Range and Co-appearance. Each component
reduces the relations based on the table’s domain, the primitive
type of the column, and the co-occurring relations, respectively.
Finally, an ablation study on the constructed prompt is conducted
which showcases the importance of the correct prompt utilization.
The combination of domain and range approaches proved to be
competitive with state-of-the-art methods in SemTab.

In the future, we are planning to enhance the co-appearance
methodology by selecting, as the initial point for the LLM, the col-
umn with the fewest possible relations, in order to reduce error
propagation. Additionally, we will explore an alternative approach
for classifying each column using pre-trained embeddings. In this
approach, the embedding of each row in the column of interest
would be aggregated, and the resulting vector would then be com-
pared to the pre-trained embeddings of each possible relation. The
closest match in the embedding space would be selected, ideally
capturing the correct semantic meaning, or even extract the top k
candidates with the above approach and parse them to the LLM.
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