
Finding Support for Tabular LLM Outputs
Grace Fan

Northeastern University

Boston, United States

fan.gr@northeastern.edu

Roee Shraga

Worcester Polytechnic Institute

Worcester, United States

rshraga@wpi.edu

Renée J. Miller

Northeastern U. & U. Waterloo

Boston, United States

miller@northeastern.edu

ABSTRACT
With the emerging advancements of AI, validating data generated

by AI models becomes a key challenge. In this work, we tackle

the problem of validating tabular data generated by large language

models (LLMs). By leveraging a recently proposed technique called

Gen-T, we present a technique to verify if the data in the LLM table

can be reclaimed (reproduced) using tables available in a given

data lake (for example, tables used to train the LLM). Specifically,

we measure the number of data lake tables that support tuples (or

partial tuples) in a generated table. We further provide suggestions

for value replacements if a generated value cannot be reclaimed.

Using this approach, users can evaluate their LLM-generated tables,

consider potential modifications for table values, and gauge how

much support the modified table has from the data lake. We discuss

two case studies showing that table values annotated with reclama-

tion support scores, along with possible value replacements, can

help users assess the trustworthiness of LLM-generated tables.

VLDBWorkshop Reference Format:
Grace Fan, Roee Shraga, and Renée J. Miller. Finding Support for Tabular

LLM Outputs. VLDB 2024 Workshop: Tabular Data Analysis Workshop

(TaDA).

VLDBWorkshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/northeastern-datalab/table-validation.

1 INTRODUCTION
Verifying the output of generative AI or large language models

(LLMs) using a data management lens is an emerging and important

area [14, 36]. For example, users who generate summary tables

and charts (e.g., Microsoft Copilot [28]) or presentation slides (e.g.,

SlidesAI [35]) from input data would find it useful to verify model

outputs and examine what data may have been used to generate

them. Associating AI-generated data (or any automatically created

data) with some form of evidence for validity will give users more

confidence in the data they are using.

Many applications require the generation of tabular data includ-

ing benchmarking where synthetic data may be used [37], or where

real data can be modified systematically to generate new tables

for benchmarking solutions to problems such as data cleaning [1].

Other applications have used knowledge graphs [9], Git reposito-

ries [20], and the web [6] to generate tabular data. Diffusion models

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

have also been used to synthesize tabular data [25, 41]. Recently, Pal

et al. proposed a method to generate tabular data using LLMs [32] to

create benchmarks for semantic data management problems. These

methods may require manual verification of the generated tables,

which may provide users with an intuitive sense of what evidence

is being used in the verification. However, manual verification is

laborious. This is the problem we tackle: how do we verify (LLM)
generated tables in a clear and intuitive way that allows a user to
easily assess what information is being used for the verification and
the degree of support different tuples in a generated table may have.

We build on top of a recently proposed technique called Gen-
T [10] and present a technique to verify if the data in a generated

table can be reclaimed (reproduced) using tables available in a given

data lake (for example, tables used to train an LLM that generated

the table). Given a table (referred to as a Source Table)
1
, Gen-T

searches the data lake to find a set of supporting tables that can be

integrated to reclaim (reproduce) the generated table as accurately

as possible. Given a reclaimed table, first we show the degree of

support for tuples (or partial tuples) from the supporting tables and

allow the user to examine the supporting tables and second, we

suggest corrections (value replacements) for values that cannot be

reclaimed.

1.1 Motivating Example
Assume a data scientist wants to analyze diversity reports of differ-

ent high-tech companies. To do so, the scientist uses (prompts) an

LLM to “show demographics of employees in Top US tech compa-

nies in 2021”. Figure 1a (top table) shows such an LLM-generated
2

table including companies, their CEOs, and their employee demo-

graphics. In addition, assume that the scientist has access to a data

lake. The bottom left side of Figure 1a shows a subset of data lake

tables, which we refer to as supporting tables. These tables are

considered as possible tables that the LLM used to generate its

table.

Our proposed framework first filters the data lake to generate a

set of supporting tables using Gen-T [10]. Our solution computes

which supporting tables support which portions of the reclaimed

table and using this, a scientist can already detect that row infor-

mation about ‘Amazon’ in the LLM table are supported by a table

containing ‘International’ statistics, whereas statistics reported for

‘Microsoft’ in the reclaimed table supported by tuples reporting

US statistics. Using this supporting information, users can verify

the LLM values. Our method automates this effort by computing

support scores for the source table values. A value that cannot be

reclaimed has a support score of zero (and would appear as a null

in Gen-T’s output). In this simple example, the support scores are

1
Which, in this work, we assume is LLM-generated.

2
In the example, we used the free research preview of GPT 3.5.

https://github.com/northeastern-datalab/table-validation
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

Total
Emps

%
Black

%
Asian

%
White

RegionCEOCompany

1,608,00012%21%54%InternationalAndy JassyAmazon
28.2%13.2%30.2%United StatesAndy JassyAmazon

%
Black

%
Asian

%
White

CEOCompany

7%24%51%Sundar PichaiGoogle

Total Emps% Black% Asian% WhiteCEOCompany
103,0005.7%35.4%48.7%Satya NadellaMicrosoft
1,608,00012%21%54%Jeff BezosAmazon
156,50051%24%7%Sundar PichaiGoogle

Total
Emps

#
Black

Asian

#
White

Company

156,50011,00037,50079,800Google

Total
Emps

RegionCEOCompany

103,000United StatesSatya NadellaMicrosoft

%
Black

%
Asian

%
White

Company

5.7%35.4%48.7%Microsoft

LLM-generated
Table

Supporting Tables

Total Emps% Black% Asian% WhiteCEOCompany
103,0005.7%35.4%48.7%Satya NadellaMicrosoft
1,608,00012%21%54%Andy JassyAmazon
156,5007%24%51%Sundar PichaiGoogle

Integration Result

(a)

(b) LLM-generated table (c) Verified table

Figure 1: (a) LLM-generated table (top) and supporting tables (bottom left) that the LLM may have used to produce the top table.
By integrating the supporting tables, Gen-T produces a reclaimed table (not shown) that has nulls for three values. Our method
adds to the reclaimed table support scores (b) and suggests values for the unreclaimed values to generate a possible Verified
(and Corrected) Table (bottom right in (a)). The LLM-generated Table and verified table from (a) are annotated with support
scores in (b), (c), respectively. Every cell is color-coded according to its support score, with darker cells indicating higher scores
and lighter shades indicating lower scores.

all one or two except for the three values that cannot be reclaimed.

Our support and verificationmethod suggests corrections for values

with zero support scores. A possible verified table is presented in

the bottom right side of Figure 1a, in which the %White and %Black
values in the third row are corrected and the CEO is corrected to

Andy Jassy.

1.2 Contributions
In this work, we present a framework to verify and correct tabular

data generated by LLMs (or any automated method). In summary,

we make the following contributions.

(1) Wemeasure the degree of support that a generated table has

from a set of supporting tables that can be used to reclaim

the table as accurately as possible.

(2) We suggest replacements for values that cannot be re-

claimed (or that a user questions, perhaps due to their low

support). We useGen-T to compute a value that would have

the highest support from supporting tables and suggest this

as a way to correct or repair the generated table.

(3) We conduct two case studies to show the value of measuring

support and using this to verify the tabular output of LLMs

and to suggest possible corrections for values that cannot

be reclaimed. We show that our method out-performs a

recent proposal by Narayan et al. [29] for using LLMs to

correct data.

All our code and data is open source.
3

3
https://github.com/northeastern-datalab/table-validation

2 RELATEDWORK
In our framework, we first search for a set of data lake tables that

support a given source table. From this set of tables, we can suggest

replacements for values in the source table that have low support.

2.1 Table Discovery and Query-by-Example
Our work uses Gen-T for supporting table discovery and reclama-

tion [10]. Table discovery is a long-standing problem [11] that

can be solved using keyword search over tables, unionable ta-

ble search, joinable table search, or various forms of related ta-

ble search. Early work such as Octopus [7] and Google Dataset

Search [5] support keyword search over the metadata of tables [26]

and smaller scale web-tables [38]. Data-driven table discovery sys-

tems [15, 30, 33, 42, 43] were then developed to find schema com-

plements, entity complements, joinable tables, and unionable tables.

Recent work relies on value overlap between the columns [3, 42, 43],

knowledge graph concept or value embedding similarity [23, 30],

and similarity of table representations [12, 19]. Some table discov-

ery methods [13] capture relationships between tables by building

an enterprise knowledge graph, but only aim to solve the table

discovery problem and do not perform table integration or recla-

mation. Other recent work [16] is also goal-oriented discovery for

specific downstream tasks, aiming to augment columns. Gen-T uses

table discovery then performs reclamation of a given Source Table.

Query-by-Example methods [18] also aim to reproduce an input

table, but with the goal of completing a partial input table. Unlike

these methods, Gen-T aims to reproduce the input table as closely

as possible, making no assumption that the input table is only

partial. Gen-T uses more integration operators than most QBE

methods, namely Select-Project-Join-Union queries, since it aims

to integrate tables to do the reclamation. Gen-T is also similar to

Query-by-Target methods [40] that synthesize a pipeline to create

a target table from a given set of tables. However, Gen-T does not

assume the set of tables or integration query that first generated a

given table are known. This aligns with our framework, since we do

not know what tables an LLM may have used to produce a tabular

output. Finally, most QBE approaches assume a small example table

while Gen-T can reclaim large tables with thousands of tuples.

2.2 Error Correction
Another line of related work is error correction. Error correction

may use knowledge bases and crowdsourcing [8], or reference

data [8], among other approaches. An important line of work uses

the notion of minimal repair to suggest corrections that would

require the fewest number of changes [21]. Our maximum support

corrections are motivated by the intuition that tables in a data

lake each provide independent evidence for a repair so we use the

correction with the highest evidence. An interesting line of future

work would be to consider whether supporting tables are in fact

independent or whether they are versions of each other [34].

3 METHOD OVERVIEW
We propose a verification framework that first reclaims a source

table, and then computes support values and uses these to suggest

corrections for values that cannot be reclaimed.

3.1 Preliminaries
To verify the values of a source table generated from an LLM, we

first find tables from a data lake that support and reclaim the source

table. We do not assume that we know the exact set of tables that

the LLM used to first generate the source table, especially a closed-

source LLM, so we do not know if we can find a set of data lake

tables that reproduces the entire source table. To search for data

lake tables that can support the source table, we need to compare

columns and tuples in data lake tables to those in the source table.

Thus, we first perform schema matching and instance comparison.

Following Gen-T [10], we perform schema matching by finding

tables with columns that have high value overlap with columns

from the source table, and rename the tables’ columns with the

source table’s column name. To efficiently find data lake tables that

can reproduce the source table, we follow Gen-T and make use of

key column(s) in the source table. While Gen-T does not assume

data lake tables contain keys or have foreign key relationships,

Gen-T does require the source table to have a key so that instance

(table) comparison is fast [10] (as instance comparison is done often

in their solution).

3.2 Reclaiming LLM Tables
We provide Gen-T with a (LLM-generated) source table, along with

a data lake (which may include set of tables used to train the LLM).

Gen-T discovers a set of supporting tables that are likely to be tables
from which the LLM-generated data may have originated, and thus

support values in the source table. Gen-T integrates the supporting

tables in a way that reclaims as many of the source values as possi-

ble, outputting a reclaimed table. The reclaimed table is identical

to the source table if all values can be reclaimed, otherwise it has

nulls for values that cannot be reclaimed.

3.3 Degree of Support
To verify a source table, we first compute support values for all val-

ues in the reclaimed table. These support values give users further

insight into the source table by evaluating how often the table’s

values are found in supporting tables. To accurately find the support

that each value has, we use the source key and search the support-

ing tables for all occurrences of the source key and key-value pairs.

Thus, we find support scores by encoding the degree of support

that each key and key-value pair has.

Example 1. In Figure 1, recall that the value Jeff Bezos cannot
be reclaimed from the given supporting tables. The key-value pair
(Microsoft, Satya Nadella) has support 1, while (Amazon,
Andy Jassy) has support 2.

3.4 Suggesting Value Replacements
If values in the source table cannot be reclaimed or have low sup-

port, we suggest possible replacements for these values. Thus, we

use support values to suggest corrections to a source table. If the

supporting tables have values with higher support scores than un-

reclaimed source values, these values can be suggested as possible

replacements to the unreclaimed source values. We take values with

the highest support from supporting tables, and suggest them as

corrections to the source table. The user can then choose to replace

source table’s values with suggested values. Note that we do not as-

sume that suggested value replacements from supporting tables are

correct, we only provide one method for suggesting replacements

for the source table. While there are other ways to evaluate and

compare degrees of support, such as trustworthiness, completeness,

and accuracy of supporting tables, we leave this to future work.

Example 2. In Figure 1, Figure 1b shows the source table and
Figure 1c shows the verified table from Figure 1a, both annotated
with support scores. Cells are color-coded to show the degree of
support that each table value has, with darker shades indicating a
high support and lighter shades indicating a lower. Comparing the
two heatmaps of support scores, we notice that the source table 1b has
no support for some Google values (in white), whereas the verified
table 1c has different Google values with higher support (in blue).
Thus, users can choose whether to replace values in their source
table with high support values suggested by our verification and
correction method.

4 CASE STUDIES
We present two case studies in which we verify LLM-generated

source tables and assess how much support they have from a set of

tables known to be part of the LLM’s training data. Note that these

are preliminary studies intended to analyze LLM-generated tabular

output using ourmethodology and provide insights to inspire future

directions. In future work, we will develop evaluation metrics and

carry out extensive experiments to study this problem. We use

Gen-T to reclaim as many values from the source tables as possible

from the training data, and evaluate their support scores. For values

that we cannot reclaim, we will illustrate what values our method

suggests as replacements. The first case study is a controlled study

(Section 4.1), in which we use an LLM [31] to generate source tables

using tables from the TPC-H benchmark [37], and assess howmuch

support the (LLM-generated) source tables have. In the second study

(Section 4.2), we take a benchmark with tables previously generated

from an LLM [32],
4
and analyze their support from an open data

lake WikiTables [2] known to be included in the LLM’s training

data.

4.1 TPC-H Controlled Study
We start with eight tables from the TPC-H benchmark [37] with

information on customer orders, suppliers, nations, etc. Using an

LLM (ChatGPT3.5 [31]), we integrate different tables from the TPC-

H benchmark to produce a tabular result. First, we serialize each

TPC-H table into a string by concatenating cell values from each

row. For table integration, we ask the LLM to consider Select-

Project-Join-Union queries. We prompt the LLM to output a table

that has a key column. Note that we consider a single key column in

this controlled study, but ourmethod can also handlemulti-attribute

keys. Figure 2 shows an example prompt we give to ChatGPT.

Given the following tables, integrate them using some
Select-Project-Join-Union query. The integration result
should have one key column, meaning it has all unique
values and no null value. Return the tabular result with
name nation_supplier_part_partsupp.csv separated by
semicolons. Ensure that all rows in the tabular result
have the same number of columns.
<serialized Table 1>
<serialized Table 2>
…

Figure 2: Sample LLM prompt to produce source tables. The
LLM is prompted to generate a table from a set of TPC-H
tables.

We analyze four tables generated by the LLM (our source tables).

We then use Gen-T [10] to reclaim each table, and see if there

are unreclaimed values (which would be the result of errors or

hallucinations by the LLM) and whether any unreclaimed values

can be correctly repaired by our method.

You are a scientist who detects and corrects errors in
tabular data. Return the corrected table, along with an
explanation of what errors you detected, and how you
fixed them using the provided data lake. Here is the
table you need to correct:

<serialized table>

Here is the data lake that you can use to correct values
in the table:

<serialized Table 1>
<serialized Table 2>

…

Figure 3: An LLM prompt to correct the source table using
TPC-H tables, and return an LLM-corrected table. This serves
as a baseline in our analyses.
4
These tables were generated as a benchmark for the table union search problem.

To evaluate how well our method suggests value corrections, we

also consider a baseline inspired by Narayan et al. [29], in which we

use the same LLM to “correct” errors in the source table.We serialize

the source table, along with TPC-H tables, and prompt the LLM

to detect errors in the source table. Then, the LLM is prompted to

correct these errors using the TPC-H tables and return the corrected

table. It has been shown that an LLM’s performance improves when

it explains its thought process [39], so we also prompt the LLM to

explain the errors it detected and how it fixed them. Figure 3 shows

an example prompt to produce an LLM-corrected table.

4.1.1 Column-level analysis. We compare the support that source

tables, verified tables, and LLM-corrected tables have from a data

lake (TPC-H tables), shown in Table 1. In the last column of Table 1,

we find how many columns (attributes) in the source table contain

values that have some support. We compare this to the column-level

support that the verified table and LLM-corrected table have.

Across all four source tables generated by an LLM, 64-90% of their

columns have some support. In other words, 10-36% of columns

have no support from the data lake. On the other hand, all columns

in the verified tables have some support from the data lake. This

shows that table reclamation is useful when validating values of a

source table and guaranteeing support from a data lake.

Compared to the LLM-corrected table (our baseline), the verified

table still produces more values supported by the data lake. By

prompting an LLM to use a data lake to correct the source table,

we find that its output values are still not always consistent with

(supported by) the data lake. Only 50-80% of the tables’ columns

have some support, but 20-50% of their columns have no support

from the data lake. Thus, our data-driven approach to finding value

corrections for source tables is more accurate.

4.1.2 Row-level analysis. We perform a row-level analysis in which

we see how many rows are fully supported by TPC-H tables. We

find that no row in the source tables or the LLM-Corrected tables

is fully supported by TPC-H tables. That is, no row has support for

all values. By contrast, most if not all rows in the verified tables

have support for all their values by the data lake.

Table 2 shows an analysis of partial data lake support for each

row in source tables, verified tables, and LLM-corrected tables.

Verified tables contain as many, if not more supported values than

the source tables. Thus, users can use supported values from the

verified tables to replace source table’s values.

Example 3. Figure 4 shows a source table (Figure 4a), Verified
table (Figure 4b), and LLM-corrected table (Figure 4c). All cells are
color-coded to show each value’s degree of support from the TPC-H
tables (darker colors indicate higher support). Each cell lists the
supporting table(s) for that value, showing the TPC-H table(s) that
support each value. Note that this is a controlled study in which
each value has only a few supporting tables (1-2), but this is not
generally the case. In Figure 4a, the source table does not have any
support for any value in the “REGIONKEY” column and for some
values in the “S_COMMENT” column. This implies that the LLM
found wrong region key values for every nation. After reclaiming
the source table using the TPC-H tables (Figure 4b), we find different
region key values and supplier comments for every nation, that all

% Columns with support for some value

Table Name Source Table Verified Table LLM-Corrected Table

region_nation_supplier_1 80% 100% 80%

region_nation_customer_0 64% 100% 73%

region_nation_supplier_2 70% 100% 60%

nation_supplier_part_partsupp_2 90% 100% 50%

Table 1: Percentage of columns in each Source table, Verified table, and LLM-corrected table (baseline) that have some support
from the data lake for some of their values.

Table Name Method # Rows Supported Values / Row

region_nation_supplier_1

Source Table 5 6-8

Verified Table 5 7-8

LLM-Corrected Table 5 6-8

region_nation_customer_0

Source Table 5 6-7

Verified Table 5 8

LLM-Corrected Table 5 7-8

region_nation_supplier_2

Source Table 4 6-7

Verified Table 4 8

LLM-Corrected Table 4 2-5

nation_supplier_part_partsupp_2

Source Table 19 9

Verified Table 19 9

LLM-Corrected Table 19 2-4

Table 2: Number of rows and supporting values per row, for Source tables, Verified tables, and LLM-corrected tables.

have support from the data lake. We can refer to the listed supporting
tables for values in the “REGIONKEY” column (“nation.csv”) and
further validate the values in the verified table.

In the LLM-corrected table (Figure 4c), values for columns
“S_ACCTBAL”, “S_PHONE”, ..., “S_COMMENT” do appear in the
TPC-H tables, but in rows with different “NATIONKEY” and “SUP-
PKEY” values. For example, values in the second tuple (1432.69,
18-179...) appear in the “supplier” table, but in a tuple where “NA-
TIONKEY” is 8 and “SUPPKEY” is 12.

LLM-corrected tables have the same number of columns and

rows as the source table. Note that a verified table may have fewer

rows if the key value of the row does not appear in the data lake.

However, an LLM may generate value corrections that have the

same or less support from the data lake as the original value. As

shown in Example 3 and Figure 4, an LLM can also falsely detect

supported values as errors and replace them with values that have

no support. New values in the LLM-corrected table may appear

in different tuples with different key values, creating misaligned

key-value pairs. This again shows that a data-driven approach for

table verification is necessary to validate tabular values and suggest

values with data lake support.

4.2 General LLM Study
In our second case study, we take an existing benchmark called

UGen [32], which contains tables generated by an LLM (Mixtral-

8x7B-Instruct [22]). We do not knowwhat tables were used to create

UGen’s tables, so we take the WikiTable benchmark [2] and see if

any of UGen’s tables can be verified using the 540,000 WikiTables

as a data lake.

Table Name Source Table Verified Table

Criminology 46.154% 64.103%

Sports 35.915% 57.576%

Climatology 28.785% 56.503%

Table 3: Percentage of values with support from the data lake

We present an analysis of three source tables from the UGen

benchmark that have the most support (“Criminology”, “Sports”,
“Climatology”) from the data lake. We use table reclamation to re-

claim each table and produce verified tables of each source table.

In regard to the LLM-corrected baseline, unlike our previous con-

trolled study, we do not knowwhat or if tables from theWikiTables

benchmark generated the UGen tables. Prompting an LLM with the

entire WikiTables benchmark is not realistic due to the token limit

(a) Source table

(b) Verified table

(c) LLM-Corrected table

Figure 4: (a) LLM-generated source table from regions, nations, and supplier tables from the TPC-H benchmark, (b) the Verified
table produced by Gen-T with value replacements, and (c) the LLM-corrected table produced by an LLM. Each cell has a value
(in bold) and a list of supporting tables for that value (in red).

constraint of LLMs, so we cannot use an LLM to correct the tables

using WikiTables as a data lake.

As a general study, we analyze how many values from each table

have any support from the WikiTables data lake. Table 3 shows the

percentage of values that have data lake support for each source

table and their verified table. While some values in the source tables

have support from the data lake (29-46% of values), most values

do not have any support (54-71% of values). On the other hand,

the verified tables have many more values with data lake support.

This shows that our data-driven approach does provide valid value

replacements.

To better understand the difference between values in a source

table from the UGen benchmark and a Verified table, we analyze

values from the “Criminology” table in Figure 5.

Example 4. Figure 5a shows a subset of rows and columns from
a table from the UGen benchmark about criminology reports, and
Figure 5b shows its verified table. The first row in Figure 5a is fully

(a) Source table (b) Verified table

Figure 5: (a) Subset of rows and columns from the “Criminology” table from UGen about Crime reports, and (b) values in the
verified table. Each cell is color-coded based on its support score from the WikiTables data lake. Each cell also has the number
of data lake tables that support that value (in red).

reproduced in the verified table (Figure 5b). However for Incidents
35 and 50 (second and third rows), the source table and Verified
table have different values for “Victim Race”. Neither of the “Victim
Race” values in the source table have any support from the data lake,
whereas the “Victim Race” values in the Verified Table have some
support from the data lake. We find that all “Victim Race” values
in the verified table have the same supporting table. Thus, “Black”
and “White” are reasonable replacements for “Asian” under “Victim
Race” in the source table. Note that some values in the verified table
may not have any data lake support (e.g., “Victim Gender” values
for Incidents 35 and 40). Gen-T aims to reproduce as many values as
possible, and if Gen-T finds rows aligned at different columns (e.g.,
“Victim Age”), it may over-combine them and replace null values
(supported by the data lake) to reproduce source table’s values (e.g.,
Female gender). This creates a key-value pair that has no support
from the data lake (e.g., Female Victim for Incident 40).

By comparing the degrees of support in source tables and Verified

tables, we show that values in Verified Tables are supported by the

data lake and can be used to replace values in the source table

that have little or no support. Note that the corrections provided

by our method do not take into account bias in the data or in the

LLM [17, 24], although this would be an interesting direction for

future research.

5 CONCLUSION AND FUTUREWORK
Table reclamation [10] has been proposed as a way of understand-

ing how a set of tables may have been integrated. In this work, we

propose a novel application of reclamation to the verification and

correction of automatically generated tables, such as tables pro-

duced by generative AI. Our novel contributions include a method

for computing the support of reclaimed data and a method for sug-

gesting corrections to values that cannot be reclaimed. We have

shown that our method outperforms an LLM-based data wrangling

and correction approach [29]

Limitations: To find supporting tables from a data lake for a

source table, we currently follow Gen-T [10] and rely on exact cell

matches. However, this does not account for different syntactic

representations of the same value. In addition, when we compute

support values (Section 3.3), we simply find occurrences of source

keys and key-value pairs. In future work, we need to develop a

scoring function that considers how much support each row in the

source table has from supporting tables, thus taking table context

into account. Lastly, while we have preliminary case studies, we

need to develop formal methods to evaluate table corrections and

discuss table validation from a data lake.

Future Work: While this is a first step in validating LLM tabular

outputs using a data lake and suggesting possible value replace-

ments, there is great potential for future work. So far, methods for

error correction have mainly relied on external sources such as

Knowledge Bases or models [4, 8, 27, 29] or on LLMs themselves.

Our work is a preliminary investigation into using data lakes for

error correction. Our current support score gives a value a high

score if it appears many times in a data lake. However, this does

not mean that the value is accurate or trustworthy. Oftentimes,

an error is propagated in a data science pipeline and thus appears

in many tables. Future research requires studying the accuracy

or trustworthiness of data (including understanding if tables are

versions of each other) and aiming to reclaim them in a way that

properly reflects these important properties.

ACKNOWLEDGMENTS
This work was supported in part by NSF under award numbers

IIS-2107248, IIS-1956096, and IIS-2325632.

REFERENCES
[1] Patricia C. Arocena, Boris Glavic, Giansalvatore Mecca, Renée J. Miller, Paolo

Papotti, and Donatello Santoro. 2015. Messing Up with BART: Error Generation

for Evaluating Data-Cleaning Algorithms. Proc. VLDB Endow. 9, 2 (2015), 36–47.
[2] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. 2013. Meth-

ods for exploring and mining tables on Wikipedia. In Proceedings of the ACM
SIGKDD Workshop on Interactive Data Exploration and Analytics, Duen Horng

Chau, Jilles Vreeken, Matthijs van Leeuwen, and Christos Faloutsos (Eds.). ACM,

18–26.

[3] Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Konstanti-

nou. 2020. Dataset Discovery in Data Lakes. In ICDE. 709–720.
[4] Bernardo Breve, Loredana Caruccio, Vincenzo Deufemia, Giuseppe Polese, et al.

2022. RENUVER: A Missing Value Imputation Algorithm based on Relaxed

Functional Dependencies.. In EDBT. 1–52.
[5] Dan Brickley, Matthew Burgess, and Natasha F. Noy. 2019. Google Dataset

Search: Building a search engine for datasets in an open Web ecosystem. In

WWW. 1365–1375.

[6] Alexander Brinkmann, Anna Primpeli, and Christian Bizer. 2023. The Web Data

Commons Schema. org Data Set Series. In Companion Proceedings of the ACM
Web Conference 2023. 136–139.

[7] Michael J. Cafarella, Alon Y. Halevy, and Nodira Khoussainova. 2009. Data

Integration for the Relational Web. Proc. VLDB Endow. 2, 1 (2009), 1090–1101.
[8] Xu Chu, John Morcos, Ihab F Ilyas, Mourad Ouzzani, Paolo Papotti, Nan Tang,

and Yin Ye. 2015. Katara: A data cleaning system powered by knowledge bases

and crowdsourcing. In SIGMOD. 1247–1261.
[9] Vincenzo Cutrona, Jiaoyan Chen, Vasilis Efthymiou, Oktie Hassanzadeh, Ernesto

Jiménez-Ruiz, Juan Sequeda, Kavitha Srinivas, Nora Abdelmageed, Madelon

Hulsebos, Daniela Oliveira, and Catia Pesquita. 2021. Results of SemTab 2021. In

Semantic Web Challenge on Tabular Data to Knowledge Graph Matching, Vol. 3103.
1–12.

[10] Grace Fan, Roee Shraga, and Renée J. Miller. 2024. Gen-T: Table Reclamation on

Data Lakes. In ICDE. 3532–3545.
[11] Grace Fan, Jin Wang, Yuliang Li, and Renée J. Miller. 2023. Table Discovery

in Data Lakes: State-of-the-art and Future Directions. In SIGMOD Companion.
69–75.

[12] Grace Fan, JinWang, Yuliang Li, Dan Zhang, and Renée J. Miller. 2023. Semantics-

aware Dataset Discovery from Data Lakes with Contextualized Column-based

Representation Learning. Proc. VLDB Endow. 16, 7 (2023), 1726–1739.
[13] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel

Madden, and Michael Stonebraker. 2018. Aurum: A Data Discovery System. In

ICDE. 1001–1012.
[14] Raul Castro Fernandez, Aaron J. Elmore,Michael J. Franklin, Sanjay Krishnan, and

Chenhao Tan. 2023. How Large LanguageModelsWill Disrupt DataManagement.

Proc. VLDB Endow. 16, 11 (2023), 3302–3309.
[15] Raul Castro Fernandez, Essam Mansour, Abdulhakim Ali Qahtan, Ahmed K.

Elmagarmid, Ihab F. Ilyas, Samuel Madden, Mourad Ouzzani, Michael Stone-

braker, and Nan Tang. 2018. Seeping Semantics: Linking Datasets Using Word

Embeddings for Data Discovery. In ICDE. 989–1000.
[16] Sainyam Galhotra, Yue Gong, and Raul Castro Fernandez. 2023. Metam: Goal-

Oriented Data Discovery. In 39th IEEE International Conference on Data Engineer-
ing, ICDE 2023, Anaheim, CA, USA, April 3-7, 2023. IEEE, 2780–2793.

[17] Isabel O. Gallegos, Ryan A. Rossi, Joe Barrow, Md. Mehrab Tanjim, Sungchul

Kim, Franck Dernoncourt, Tong Yu, Ruiyi Zhang, and Nesreen K. Ahmed. 2023.

Bias and Fairness in Large Language Models: A Survey. CoRR abs/2309.00770

(2023).

[18] Yue Gong, Zhiru Zhu, Sainyam Galhotra, and Raul Castro Fernandez. 2023. Ver:

View Discovery in the Wild. In ICDE. 503–516.
[19] Xuming Hu, Shen Wang, Xiao Qin, Chuan Lei, Zhengyuan Shen, Christos Falout-

sos, Asterios Katsifodimos, George Karypis, Lijie Wen, and Philip S. Yu. 2023.

Automatic Table Union Search with Tabular Representation Learning. In ACL.
3786–3800.

[20] Madelon Hulsebos, Çagatay Demiralp, and Paul Groth. 2023. GitTables: A Large-

Scale Corpus of Relational Tables. Proc. ACMManag. Data 1, 1 (2023), 30:1–30:17.
[21] Ihab F Ilyas and Xu Chu. 2019. Data cleaning. Morgan & Claypool.

[22] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche

Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou

Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample,

Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Sandeep

Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet,

Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. 2024.

Mixtral of Experts. arXiv:2401.04088 [cs.LG]

[23] Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatter-

bauer, Renée J. Miller, and Mirek Riedewald. 2023. SANTOS: Relationship-based

Semantic Table Union Search. In SIGMOD.
[24] Hadas Kotek, Rikker Dockum, and David Q. Sun. 2023. Gender bias and stereo-

types in Large Language Models. In CI. 12–24.
[25] Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. 2023.

Tabddpm: Modelling tabular data with diffusion models. In International Confer-
ence on Machine Learning. PMLR, 17564–17579.

[26] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. 2010. Annotating

and Searching Web Tables Using Entities, Types and Relationships. Proc. VLDB
Endow. 3, 1 (2010), 1338–1347.

[27] Mohammad Mahdavi and Ziawasch Abedjan. 2020. Baran: Effective error cor-

rection via a unified context representation and transfer learning. Proceedings of
the VLDB Endowment 13, 12 (2020), 1948–1961.

[28] Microsoft. 2024. https://www.microsoft.com/en-us/copilot, last accessed on

Nov 21, 2023.

[29] Avanika Narayan, Ines Chami, Laurel Orr, and Christopher Ré. 2022. Can Foun-

dation Models Wrangle Your Data? Proceedings of the VLDB Endowment 16, 4
(2022), 738–746.

[30] Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. 2018. Table

Union Search on Open Data. Proc. VLDB Endow. 11, 7 (2018), 813–825.
[31] OpenAI. 2024. Free Research Preview. https://chat.openai.com/, last accessed

on Feb 25, 2024.

[32] Koyena Pal, AamodKhatiwada, Roee Shraga, and Renée J. Miller. 2023. Generative

Benchmark Creation for Table Union Search. CoRR abs/2308.03883 (2023).

[33] Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Y. Halevy, Hongrae Lee, Fei Wu,

Reynold Xin, and Cong Yu. 2012. Finding related tables. In SIGMOD. 817–828.
[34] Roee Shraga and Renée J. Miller. 2023. Explaining Dataset Changes for Semantic

Data Versioning with Explain-Da-V. Proc. VLDB Endow. 16, 6 (2023), 1587–1600.
[35] SlidesAI. 2024. https://www.slidesai.io/, last accessed on Nov 21, 2023.

[36] Nan Tang, Chenyu Yang, Ju Fan, Lei Cao, and Alon Halevy. 2024. VerifAI: Verified

Generative AI. In CIDR.
[37] TPC. 2014. http://www.tpc.org/, last accessed on Nov 11, 2023.

[38] Roee Shraga, Haggai Roitman, Guy Feigenblat, and Mustafa Canim. 2020. Web

Table Retrieval using Multimodal Deep Learning. In SIGIR. 1399–1408.
[39] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei

Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2022. Chain-of-Thought Prompting

Elicits Reasoning in Large Language Models. In Advances in Neural Information
Processing Systems 35.

[40] Junwen Yang, Yeye He, and Surajit Chaudhuri. 2021. Auto-Pipeline: Synthesize

Data Pipelines By-Target Using Reinforcement Learning and Search. Proc. VLDB
Endow. 14, 11 (2021), 2563–2575.

[41] Hengrui Zhang, Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srinivasan,

Xiao Qin, Christos Faloutsos, Huzefa Rangwala, and George Karypis. 2023. Mixed-

Type Tabular Data Synthesis with Score-based Diffusion in Latent Space. In The
Twelfth International Conference on Learning Representations.

[42] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE:

Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In

SIGMOD. 847–864.
[43] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. 2016. LSH

Ensemble: Internet-Scale Domain Search. Proc. VLDB Endow. 9, 12 (2016), 1185–
1196.

https://arxiv.org/abs/2401.04088
https://www.microsoft.com/en-us/copilot
https://chat.openai.com/
https://www.slidesai.io/
http://www.tpc.org/

	Abstract
	1 Introduction
	1.1 Motivating Example
	1.2 Contributions

	2 Related Work
	2.1 Table Discovery and Query-by-Example
	2.2 Error Correction

	3 Method Overview
	3.1 Preliminaries
	3.2 Reclaiming LLM Tables
	3.3 Degree of Support
	3.4 Suggesting Value Replacements

	4 Case Studies
	4.1 TPC-H Controlled Study
	4.2 General LLM Study

	5 Conclusion and Future Work
	Acknowledgments
	References

