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ABSTRACT
Large Language Models (LLMs) have shown useful applications in
a variety of tasks, including data wrangling. In this paper, we in-
vestigate the use of an off-the-shelf LLM for schema matching. Our
objective is to identify semantic correspondences between elements
of two relational schemas using only names and descriptions. Using
a newly created benchmark from the health domain, we propose
different so-called task scopes. These are methods for prompting
the LLM to do schema matching, which vary in the amount of con-
text information contained in the prompt. Using these task scopes
we compare LLM-based schema matching against a string simi-
larity baseline, investigating matching quality, verification effort,
decisiveness, and complementarity of the approaches. We find that
matching quality suffers from a lack of context information, but also
from providing too much context information. In general, using
newer LLM versions increases decisiveness. We identify task scopes
that have acceptable verification effort and succeed in identifying a
significant number of true semantic matches. Our study shows that
LLMs have potential in bootstrapping the schema matching process
and are able to assist data engineers in speeding up this task solely
based on schema element names and descriptions without the need
for data instances.
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1 INTRODUCTION
Schema matching [17] constitutes a core task in data integration [6].
It refers to the problem of identifying semantic correspondences
between elements of two relational schemas that represent the
same real-world concept. For example, a schema matching sys-
tem may conclude that an attribute admittime from one table in
a medical information system semantically corresponds to an at-
tribute visit_start_date in another table. Once correspondences
are identified, they can be used to translate data from the source
schema into data conforming to the target schema [6], a process
known as schema mapping. In this paper, we focus on schema
matching.

Schema matching systems are software systems that help data
engineers perform schema matching. They generate a set of match
candidates (i.e., candidate correspondences) which the data engineer
can accept, reject or edit in order to obtain a final set of matches [17].
To generate match candidates, a wide variety of signals that hint
at element correspondence have been considered in the research
literature. These include syntactic similarity of attribute names;
consulting thesauri; looking at data values and their distributions in
concrete database instances; and exploiting database constraints [1,
2, 5, 17]. Unfortunately, many such signals remain unavailable in
real-world schemas [12]: attribute names are often cryptic and
involve domain-specific abbreviations not occurring in thesauri.
Use of actual data values and concrete database instances may
be restricted for legal reasons; e.g., this is the case in the health
domain where real database instances are problematic to obtain due
to privacy constraints. In the absence of available real instances, one
may consider leveraging synthetically-generated instances to aid
in matching. However, accurately replicating the complexity and
subtle patterns of real medical data is highly challenging and time-
consuming, and rigorous validation of generated schema matches
is hindered by the lack of a true ground truth. In the health domain
setting, it is hence vital to be able to generate match candidates
with as little information as possible.

In the healthcare data integration context, we found that, despite
its restrictions, we often have schema documentation in the form
of data dictionaries available, as well as natural-language descrip-
tions of some schema elements. In particular, target schemas are
often common data models: data schemas designed by community
consensus that harmonize healthcare data [14]. These data models
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are well documented, explaining the semantics of schema elements
in detail.

In this paper, we aim to exploit this information and present
an experimental study on schema matching using an off-the-shelf
generative Large Language Model (LLM). We investigate how LLMs
can be prompted to generate a set of match candidates. We focus
on the use of schema documentation as the sole signal and evaluate
the performance against a newly defined real-world benchmark.

We define different task scopes for doing LLM-based schema
matching. Task scopes are prompting methods they vary primarily
in the amount of context information contained in the prompt.
Using these task scopes, we aim to answer the following research
questions:

(1) How does the quality of LLM-based schema matching vary
among different task scopes and LLMmodels, and how does
it compare to a string-similarity-based baseline?

(2) How decisive are LLMs in expressing their opinions on
attribute pairs, and how does this affect their reliability and
consistency?

(3) What is the extent of the complementarity between the
match results for different task scopes and the baseline?

(4) Is it useful and practical to combine different LLM-based
and/or string-similarity-based matchings?

To answer these questions, we introduce the schema matching
task and experimental setup in Section 2. There, we also introduce
the different task scopes. We then present and discuss our findings
w.r.t. the first two research questions in Section 3.1 and investigate
the last two questions in Section 3.2. We conclude in Section 4.

Related Work. We traditionally perform schema matching by
exploiting signals such as syntactic similarity of attribute names;
thesauri; data values and distributions; and database constraints [1,
2, 5, 17]. In this work, we are interested in schema matching using
LLMs in more restricted settings where, except for schema doc-
umentation (i.e., the attribute names and their natural-language
descriptions) these signals remain unavailable.

Dataset discovery is the process of navigating a collection of
data sources in order to find datasets that are relevant for a task at
hand, as well as the relationships among those datasets. It has been
observed that schema matching is a critical component in dataset
discovery, and that many dataset discovery systems implement
their own schema matcher [10, 11]. Indeed, conceptually, one can
also see dataset discovery as generalizing schema matching. Like
traditional schemamatching algorithms, however, dataset discovery
algorithms will aim to exploit a rich variety of signals to do the
discovery, including access to the actual data instances. By contrast,
in this work, we are interested in schema matching using LLMs in
the setting where, except for schema documentation, such signals
are unavailable.

LLMs are general machine learning models trained on large and
generic natural text data, such as the web. They are able to solve
a variety of tasks with no or minimal fine-tuning effort [3]. In the
field of data management, LLMs have shown promising results for
data wrangling tasks such as error detection and data imputation
[13]. However, except for [22], they have not been widely applied
to schema matching, yet.

Zhang et al [22] also use language models for instance-free
schema matching, but employ and fine-tune an encoder-only model
(BERT). By contrast, we use an off-the-shelf generative decoder-
only model (GPT) without any need for fine-tuning.

Also related is SMAT [21] which uses an attention-based neural
network to match GLoVe embeddings [16] of schema elements,
but requires a majority of the data to be labelled: 80% of the data
that needs to be matched is used for training, and subsequently
an additional 10% is used for tuning weights, leaving only 10%
to evaluate the model. For practical applications, this presents a
significant limitation, as requiring 90% of the input schemas to be
labeled, amounts to almost completely matching the schemas by
hand. Our approach, however, does not require any labelled data,
allowing an off-the-shelf usage.

AdnEV [18] proposes a methodology based on deep learning and
weak supervision to adjust and combine different schema matching
algorithms. In this work, we observe that it makes sense to combine
different task scopes to achieve the greatest effectiveness. It is an
interesting direction for future work whether approaches such as
AdnEV can be used to make this combination even more effective.

2 METHODS
Schema Matching. For the purpose of this paper, a schema refers

to a relational schema, i.e., a finite set of attributes. A 1:1 match
between two schemas 𝑆1 and 𝑆2 is a pair (𝑎, 𝑏) ∈ 𝑆1 × 𝑆2 that is
meant to indicate that there is a semantic correspondence between
attribute 𝑎 ∈ 𝑆1 and 𝑏 ∈ 𝑆2. Because in the schema mapping phase
we should be able to unambiguously map data values of attribute 𝑎
into data values of attribute 𝑏 (and vice versa) we say that (𝑎, 𝑏) is
a (semantically) valid 1:1 match if there exists an invertible function
mapping values of 𝑎 into values of 𝑏. We define schema matching
to be the problem of deriving a set of valid 1:1 matches between
two given schemas.1 We note that in the literature, also matches
of kind 1 : 𝑚, 𝑛 : 1 and 𝑛 : 𝑚 exist. For example, in a match
of kind 1 : 𝑚 we may relate a single attribute 𝑎 in 𝑆1 to a set of
attributes 𝐵 ⊆ 𝑆2, meaning that the information of 𝑎-values in
𝑆1 will be “distributed” among all the attributes in 𝐵 and that we
need all attributes in 𝐵 to recover the 𝑎-value. A typical example
is relating Name in 𝑆1 to 𝐵 = {First name, Last name}. In this
paper, we restrict ourselves to 1:1 matches for two reasons. First,
this shrinks the search space significantly for possible matches,
making our experimental approach feasible even for larger schemas.
Second, it allows us to compare our results to a baseline using string
similarity measures, which are difficult to extend to 1 :𝑚, 𝑛 : 1 or
𝑛 :𝑚 matches.

Benchmark. In order to gauge the suitability of LLMs for schema
matching we have created a new benchmark, situated in the health-
care domain.We draw source schemas from theMIMIC-IV dataset [7]
and target schemas from OHDSI OMOP Common Data Model [14].
Both are public, well-known data models in the medical informat-
ics community. The OHDSI community maintains an ETL process
to transform data from MIMIC-IV to OMOP [8]. We use this ETL
specification to manually identify all semantically valid 1:1 matches
that will serve as the ground truth. That is, we manually inspect all
1In this paper, we assume that the source and target table are already provided, the table
matching step, i.e., identifying corresponding tables, has thus already been completed.



applied ETL transformations and derive each attribute combination
(𝑎, 𝑏) where a single value from the source attribute 𝑎 is sufficient
to determine the value from the target attribute 𝑏 and vice versa.
For example, the attribute gender from MIMICs Patients table is
mapped to both gender_concept_id and gender_source_value
of OMOPs Person table. Bothmappings are valid 1:1 matches, as the
value in gender can bemapped to a valid value fit for either attribute
and vice versa. In contrast, the attribute admittime of MIMICs
Admissions table is not a valid match for visit_start_datetime
of OMOPs Visit_Occurrence table, as the ETL specification needs
to combine it with another attribute to determine the value of
visit_start_datetime.

We have extracted a total of 49 valid 1:1 matches between 7
relations fromMIMIC-IV and 6 relations from OMOP. In total, there
are 9 relation pairs that contain at least one semantic match. We will
refer to each of these relation pairs as a dataset in our benchmark.
Our 9 datasets create a search space of 1839 attribute pairs that
contain 49 true semantic 1:1 matches as summarized in Table 1.
We consider all other attribute pairs as non-matches. The schema
matching problem is hence highly imbalanced. For each (source or
target) table and each attribute we extract the name as well as a
natural language description from respective documentations. Our
benchmark is publicly available in our artefacts repository [15].

We acknowledge that a benchmark consisting of public datasets
is probably contained in the training data of an LLM trained on the
web. As an example, when asking ChatGPT to give a description
of the attribute dischtime from the admissions table in MIMIC-
IV, the answer returned from the model fits the description given
in the official documentation of MIMIC-IV well. This represents
a limitation of our experimental setup. We argue that although
the datasets are known to the LLM, the true semantic matches to
transform data from MIMIC-IV to OMOP are not readily explicitly
available: significant effort is required to extract them from the ETL
scripts.

Prompt Engineering. Generative LLMs are trained to answer ques-
tions in natural language. As such, we need to interface with the
LLM via prompts that describe the task to be performed by the LLM
as well as the table and attribute names and descriptions. Previous
research into prompt engineering has proposed a number of prompt
engineering patterns that positively influence answer quality [13].
We next discuss how we have applied these common practices in
our prompt design by means of the visual representation in Fig-
ure 1. Each prompt is always applied to a single source schema
and a single target schema (plus their descriptions), and consists of
four sections referred to as Introduction, Source Information, Target
Information, and Task Description.

First, we introduce the schema matching problem to the LLM
by utilizing the Persona Pattern to let the LLM act as a schema
matcher [20]. We then introduce our definition of a valid 1:1 match
using the Meta Language Creation pattern [20]. Both patterns are
illustrated in the Introduction section in Figure 1.

Subsequently, we serialize the schema information, including
table and attribute descriptions, using a serialization inspired by
[13]. Concretely, we first serialize the source information, followed
by the target information. An example of this can be viewed in
Figure 1 in the Source Information and Target Information sections.

We finalize our prompts with the task description that utilizes the
phrase “Lets think step by step” which has been shown to increase
performance by instructing the LLM to build up a step-by-step
argument in the output [9] and to which we refer as the Chain of
Thought Pattern in Figure 1. We end the task description with the
Output Automater pattern to instruct the model to output structured
data (in particular: JSON) for further processing [20]. Here, we ask
the LLM to generate a structured output such that we can extract
(𝑎, 𝑏, out) triples, where 𝑎 and 𝑏 are attributes from the source and
target schema, respectively, and out (discussed further below) is
the LLM’s opinion of whether (𝑎, 𝑏) is a semantically meaningful
1:1 match. Both patterns are illustrated in the example prompt in
Figure 1 in section Task Description.

During our experiments, we found that using a three-step scale
for out works best. We ask the LLM to use yes for a match, no for
a non-match, and unknown if there is not enough information to
decide. We have also experimented with numerical scores, which
were difficult to interpret, and five-step scales, which were prone
to hallucinations. For example, asking for a five-step scale of no
correspondence, low correspondence, medium correspondence, high
correspondence and very high correspondence frequently resulted in
opinions such as low to medium correspondence, making a reliable
interpretation highly difficult. We note that LLM output is not
necessarily complete: there may be attribute pairs (𝑎, 𝑏) for which
the LLM does not give its opinion; we treat this as unknown.

Task Scopes. In this paper, we focus on a comparison of task
scopes, which we define as the amount of schema information con-
tained in a single prompt. We define four different scopes:

1-to-1 Each prompt contains exactly one attribute from source
and one from target.

1-to-N Each prompt contains a single attribute from the source
schema and 𝑁 attributes of the target schema, where 𝑁

refers to the total number of attributes in the target schema.
N-to-1 Each prompt contains 𝑁 attributes from the source

schema and a single attribute from the target schema, where
𝑁 refers to the total number of attributes in the source
schema.

N-to-M Each prompt contains 𝑁 attributes from the source
schema and𝑀 attributes from the target schema, where 𝑁
and𝑀 refer to the total number of attributes in the source
and target schema, respectively.

It is worth noting that the task scope choice has implications on the
complexity to parse structured votes from the LLM output. While
we expect a single vote (e.g. yes or no) in the 1-to-1 case, an output
to the N-to-M task scope potentially contains 𝑁 ×𝑀 votes, one for
each attribute pair.

We investigate both 1-to-N and N-to-1 as both scopes present
very different contexts to the LLM. In the former, the LLM is pre-
sented with all available information about the target relation while
limiting the information of the source information, and vice versa
in the latter. We found that this difference impacts the quality of
the matches.

String Similarity Baseline. We aim to compare the performance
of the LLM-based approaches against a baseline based on a string
similarity measure, a well-established baseline approach in the field



Table 1: Benchmark datasets: names of source and target tables, their respective attributes and attribute pair counts, and the number of true
semantic matches.

dataset Source |source| target |target| |pairs| |matches|
AdCO Admissions 16 Condition_Occurrence 16 256 2
AdVD Admissions 16 Visit_Detail 19 304 5
AdVO Admissions 16 Visit_Occurrence 17 272 8
DiCO Diagnoses_ICD 5 Condition_Occurrence 16 80 2
LaMe Labevents 10 Measurement 20 200 10
PaPe Patients 6 Person 18 108 5
PrDE Prescriptions 17 Drug_Exposure 23 391 6
SeVD Services 5 Visit_Detail 19 95 5
TrVD Transfers 7 Visit_Detail 19 133 6

Total 1839 49

Figure 1: A truncated example of a 1-to-N prompt. The prompt engineering best practices applied are highlighted.

of schema mapping and ontology alignment [4, 19]. To do so, we
have selected edit distance-based metrics investigated by [19] and
[4] and checked for their availability in the common Python library
textdistance2. We aim to find commonly used similarity metrics
that are readily available and identified four metrics: Jaro Winkler,
Levenshtein, Monge Elkan and N-gram. We evaluated these met-
rics on our benchmark by calculating the similarities between the
attribute names for each attribute combination in the benchmark.
It is important to note that these attribute pairs are the same as
those used in our results, although we do not report dataset-specific
values here. We then generate a ranking of all attribute pairs and
calculate the precision and recall for each threshold per similar-
ity measure. Figure 2 displays the corresponding precision-recall
curve and reveals that N-gram with 𝑛 = 3 is the best performing
metric (w.r.t. the area under curve). This string similarity metric
will therefore be used in the following as a baseline.

Specifically, to obtain the baseline we calculate the N-gram string
similarity sim𝑁𝐺 (𝑎, 𝑏) between all possible attribute pairs in a

2https://pypi.org/project/textdistance

dataset. For each attribute name 𝑎′ we obtain the set of its 3-grams 𝑎
after padding with special characters as described by Sun et al. [19].
For example, the name admittime is transformed into the set {##a,
#ad, adm, dmi, min, int, ntt, tti, tim, ime, me%, e%%}. For two sets
𝑎 and 𝑏, we then calculate the Dice similarity:

sim𝑁𝐺 (𝑎, 𝑏) := 2 × |𝑎 ∩ 𝑏 |
|𝑎 | + |𝑏 |

Since each sim𝑁𝐺 (𝑎, 𝑏) lies in the range [0; 1], this defines an or-
der on match candidates, with highest values appearing first. One
can either set a threshold 𝜃 to decide which similarity value is
sufficient for a match or or limit the number of matches to the
top 𝑘 ranked ones. Using thresholding, all pairs sim𝑁𝐺 (𝑎, 𝑏) ≥
𝜃 will then be output as a match, and using ranking, all pairs
{(𝑎0, 𝑏0), . . . , (𝑎𝑛, 𝑏𝑛)}[1 : 𝑘] where sim𝑁𝐺 (𝑎𝑖 , 𝑏𝑖 ) ≥ sim𝑁𝐺 (𝑎 𝑗 , 𝑏 𝑗 )
for all 𝑖 < 𝑗 will be output as a match. We choose the former and de-
termine a separate threshold per dataset as follows: we consider all
calculated similarity values as thresholds and pick the threshold that
achieves the best F1-score on the dataset. We then choose sim𝑁𝐺

with this threshold as the baseline for the considered dataset. This

https://pypi.org/project/textdistance
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Figure 2: Precision-Recall curve of different string similarity
metrics, tested on the attribute names of our benchmark.

approach favors the baseline, as it overestimates the capabilities of
the N-gram string similarity for schema matching. In practice, a
data engineer cannot know which threshold to use.

The choice of tresholding over ranking is motivated by the fact
that the output of the LLM does not imply any ordering, we ask
for a simple yes, no or unknown decision instead. Hence, common
ranking metrics such as recall@k ormean reciprocal rank cannot be
applied to the LLM results. Furthermore, we note that our approach
to determine dataset-specific thresholds is equivalent to choosing a
dataset-specific 𝑘 that maximizes the F1-score when interpreting
the sim𝑁𝐺 as a ranking.

Experimental Setup. For a fixed dataset and fixed task scope,
an experiment consists of sending the correspoding prompt three
times to the LLM. We extract three votes from the responses and
use majority voting to minimize the effect of hallucinations. If an
attribute pair is missing or there is a split decision, this pair is
considered unknown. Each experiment is repeated five times. The
results are compared against our benchmark by means of (i) the
F1-score, the harmonic mean between precision and recall w.r.t.
the ground-truth semantically valid matches, and (ii) a decisive-
ness-score, indicating the fraction of non-unknown votes. We use
OpenAI’s gpt-3.5-turbo-0125 and gpt-4-0125-preview mod-
els with default settings, acknowledging the fact that performance
could be improved with tuning the settings. Jupyter notebooks
that we used to obtain the results can be found in our artefacts
repository [15].

3 RESULTS
We next present the findings of our experimental study on schema
matching using LLMs. Section 3.1 focuses on the quality of the
schema matching results generated by the different separate task
scopes, whereas Section 3.2 addresses their complementarity and
the benefits of combining task scopes.

3.1 Quality of schema matching
We begin by evaluating the quality of schema matching results pro-
duced by the different task scopes, using F1-scores for comparison
both among the LLMs and against the baseline (Section 3.1.1). Next,
we assess the decisiveness of the LLMs in their opinions on attribute
pairs in Section 3.1.2. Finally, we analyze the consistency of our
experiments across various task scopes and datasets in Section 3.1.3,

reporting the standard deviation of F1-score, precision, and recall
to illustrate the expected variance when using LLMs for schema
matching.

3.1.1 F1-scores. Table 2 shows the median F1-scores of each task
scope per dataset, for both LLMs that we tested. The colouring
indicates whether the F1-scores are higher (green) or lower (pur-
ple) than sim𝑁𝐺 . The best F1-score of each dataset is set in bold.
We observe that the maximal F1-scores range from 0.364 to 0.800,
highlighting a variation in the difficulty across the datasets. The
bottom row displays the mean per column over all datasets and
reveals the following general trends:

• all task scopes, except for 1-to-1, outperform the baseline
sim𝑁𝐺 ;

• each task scope shows an improvement in F1-score when
moving from GPT-3.5 to GPT-4; and,

• under the task scopes tested on both LLMs, N-to-M has the
lowest mean F1-score.

Next, we conduct a more detailed analysis of each task scope in
relation to the datasets.

We see that 1-to-1 is the least performing task scope: it fails to
achieve the maximal F1-score on any dataset and is worse than (or
on par with) the N-gram baseline, with the exception of the DiCO
and the LaMe datasets. Moreover, 1-to-1 is typically outperformed
by other scopes that incorporate more information in their prompts.
Consequently, we assert that it lacks sufficient information for
making informed, high-quality decisions.

Due to the low performance of 1-to-1 under GPT-3.5, combined
with its high monetary cost, we decided to exclude the 1-to-1 task
scope for our experiments using GPT-4.

For the analysis of the remainder of the task scopes, we use the
following format. For a fixed task scope, we first consider GPT-3.5,
and compare it with the baseline and the other task scopes run under
GPT-3.5. We then make a comparison with its GPT-4 counterpart.
Finally, we consider the task scope run under GPT-4 and compare
with the baseline and the other task scopes for GPT-4.

The 1-to-N task scope obtains the maximal GPT-3.5 F1-score
on the DiCO, PrDE and the SeVD dataset, outperforming sim𝑁𝐺 on
five of nine datasets. With a single exception on the PaPe dataset,
1-to-N dominates 1-to-1. By this comparison, we deduce that
adding more context information to a single prompt improves the
quality of the LLM’s decisions. The scores of 1-to-N can be further
improved by using GPT-4, the SeVD dataset being the single excep-
tion. This improvement can be attributed to an increase in precision
on each dataset except on DiCO where it remains the same. With
GPT-4, 1-to-N outperforms sim𝑁𝐺 on eight datasets.

Using the N-to-1 task scope we see improved F1-scores on aver-
age, achieving the maximal F1-score of the baseline and all GPT-3.5-
based experiments four times and dominating sim𝑁𝐺 on five of
nine datasets. Further, N-to-1 dominates 1-to-1 on all datasets
except for the DiCO dataset, reinforcing the deduction we made for
1-to-N: adding context information improves matching quality. Us-
ing GPT-4, the N-to-1 task scope dominates the N-gram baseline on
every single dataset, achieving the highest F1-score on five datasets
as well as the highest F1-score on average. Analogous to 1-to-N,
the improvement can be attributed to an improved precision score
on every dataset while the recall decreases on one dataset.



Table 2: Median F1-scores, coloured for comparison against the N-gram similarity baseline. Green indicates an F1-score higher,
purple an F1-score lower than the baseline. After each F1-score, in parenthesis (𝑝, 𝑟 ), we give the precision 𝑝 and the recall 𝑟 .
The best F1-score of each dataset is set in bold.

GPT-3.5 GPT-4
dataset sim𝑁𝐺 1-to-1 1-to-N N-to-1 N-to-M 1-to-N N-to-1 N-to-M

AdCO 0.286 (0.20, 0.50) 0.000 (0.00, 0.00) 0.133 (0.08, 0.50) 0.200 (0.11, 1.00) 0.286 (0.20, 0.50) 0.400 (0.33, 0.50) 0.400 (0.25, 1.00) 0.400 (0.33, 0.50)
AdVD 0.125 (0.07, 0.40) 0.000 (0.00, 0.00) 0.083 (0.05, 0.20) 0.250 (0.16, 0.60) 0.286 (0.50, 0.20) 0.250 (0.18, 0.40) 0.316 (0.21, 0.60) 0.364 (0.33, 0.40)
AdVO 0.333 (0.50, 0.25) 0.235 (0.22, 0.25) 0.320 (0.24, 0.50) 0.500 (0.38, 0.75) 0.182 (0.33, 0.12) 0.444 (0.40, 0.50) 0.636 (0.50, 0.88) 0.308 (0.40, 0.25)
DiCO 0.400 (0.33, 0.50) 0.667 (1.00, 0.50) 0.800 (0.67, 1.00) 0.267 (0.15, 1.00) 0.667 (0.50, 1.00) 0.800 (0.67, 1.00) 0.667 (0.50, 1.00) 0.800 (0.67, 1.00)
LaMe 0.333 (1.00, 0.20) 0.471 (0.57, 0.40) 0.500 (0.50, 0.50) 0.667 (0.53, 0.90) 0.500 (0.67, 0.40) 0.636 (0.58, 0.70) 0.800 (0.67, 1.00) 0.556 (0.62, 0.50)
PaPe 0.600 (0.60, 0.60) 0.571 (1.00, 0.40) 0.500 (0.43, 0.60) 0.615 (0.50, 0.80) 0.333 (1.00, 0.20) 0.571 (1.00, 0.40) 0.800 (0.80, 0.80) 0.571 (1.00, 0.40)
PrDE 0.333 (0.25, 0.50) 0.222 (0.33, 0.17) 0.417 (0.28, 0.83) 0.276 (0.17, 0.67) 0.200 (0.25, 0.17) 0.556 (0.42, 0.83) 0.500 (0.36, 0.83) 0.333 (0.33, 0.33)
SeVD 0.222 (0.25, 0.20) 0.000 (0.00, 0.00) 0.400 (0.40, 0.40) 0.400 (0.30, 0.60) 0.333 (1.00, 0.20) 0.333 (1.00, 0.20) 0.571 (1.00, 0.40) 0.286 (0.50, 0.20)
TrVD 0.381 (0.27, 0.67) 0.000 (0.00, 0.00) 0.429 (0.38, 0.50) 0.316 (0.23, 0.50) 0.600 (0.75, 0.50) 0.667 (0.67, 0.67) 0.533 (0.44, 0.67) 0.600 (0.75, 0.50)

mean 0.335 (0.39, 0.42) 0.241 (0.35, 0.19) 0.398 (0.33, 0.56) 0.388 (0.28, 0.76) 0.376 (0.58, 0.37) 0.518 (0.58, 0.58) 0.580 (0.53, 0.80) 0.469 (0.55, 0.45)

Finally, the N-to-M task scope achieves a maximal F1-score
among the GPT-3.5 approaches three times, outperforming both
sim𝑁𝐺 and 1-to-1 on five and six datasets, respectively. With the
exception of SeVD, the use of GPT-4 improves the F1-scores on
all datasets, resulting in the highest F1-score on three datasets. In
contrast to 1-to-N and N-to-1, recall of N-to-M is better or on
par with its GPT-3.5 counterpart. With GPT-4, N-to-M dominates
sim𝑁𝐺 on six datasets. We hypothesize that the failure to improve
the number of sim𝑁𝐺 -dominating datasets is due to the increase in
complexity of the output format. While it is sufficient to simply list
attribute names for 1-to-N and N-to-1, we need a list of attribute
pairs for N-to-M.

Conclusion. We observe that for both LLMs, all task scopes, ex-
cept for 1-to-1, outperform the baseline on average with a max-
imal increase of 0.245 points. However, no single task scope con-
sistently dominates across all datasets. Across task scopes, moving
from GPT-3.5 to GPT-4 increases the F1-score over all data sets
(with SeVD as a single exception for 1-to-N as well as N-to-M)
confirming the general accepted belief that transitioning to more
advanced LLMs yields better results. Interestingly, when moving
from GPT-3.5 to GPT-4 the rise in F1-score is due to an increase in
precision for the task scopes 1-to-N and N-to-1, while for N-to-M
it is due to an increase in recall (sometimes even at the expense of
a slight drop in precision). Finally, within the same LLM, N-to-M is
the least performing task scope of the three task scopes we analysed
on both LLMs.

3.1.2 Decisiveness. In the course of our experiments, we observed
that the LLM often fails to express an opinion on all attribute pairs
requested. We summarize this behavior in the decisiveness score
shown in Table 3. This score captures the ratio of attribute pairs
that received a yes or no vote–so not an unknown–to all attribute
pairs per dataset. As the name already indicates it measures how
decisive the model is. On most datasets, the following inequality
holds: 1-to-1 > N-to-1 > 1-to-N > N-to-M. We clearly see that
increasing the amount of information per prompt decreases the
decisiveness. With GPT-3.5, the N-to-1 task scope remains in an
acceptable range, 1-to-N fluctuates between datasets while N-to-M
is consistently in an unacceptable range. The use of GPT-4 improves
the decisiveness considerably for N-to-1 and 1-to-N. Interestingly,
the decisiveness of N-to-M does not profit from the larger model.

Table 3: Decisiveness scores (the number of attribute pairs
that received a yes or no score–so not an unknown–relative
to the total number of attribute pairs) per task scope and
model.

GPT-3.5 GPT-4
dataset 1-to-1 1-to-N N-to-1 N-to-M 1-to-N N-to-1 N-to-M

AdCO 1.000 0.160 0.160 0.023 0.996 0.992 0.012
AdVD 0.993 0.128 0.164 0.007 0.947 1.000 0.023
AdVO 1.000 0.066 0.085 0.011 0.993 0.996 0.022
DiCO 0.988 0.312 0.362 0.050 1.000 1.000 0.037
LaMe 0.995 0.145 0.085 0.040 0.905 1.000 0.045
PaPe 1.000 0.065 0.315 0.009 0.981 1.000 0.046
PrDE 0.997 0.115 0.102 0.010 0.895 0.990 0.028
SeVD 0.989 0.053 0.421 0.011 0.989 0.947 0.021
TrVD 1.000 0.060 0.263 0.030 1.000 1.000 0.030

mean 0.996 0.123 0.218 0.021 0.967 0.992 0.029

Given the low quality of results for 1-to-1, the high decisive-
ness indicates that using the 1-to-1 task scope makes the wrong
decision most of the time. This supports our decision to exclude
1-to-1 from further experiments with GPT-4. The extremely low
decisiveness of N-to-M, however, may indicate that the complexity
of the output could play a major role in the low quality of its results.
As previously mentioned, the output of N-to-M is a list of tuples of
attribute names while it is sufficient to simply list attribute names
for 1-to-N and N-to-1.

Conclusion. An increase of context information per prompt de-
creases the number of attribute pairs an LLM expresses an opinion
on. While this effect can be mitigated using GPT-4 for 1-to-N and
N-to-1, this is not the case for N-to-M.

3.1.3 Consistency. We have been reporting results with respect to
the median. Given that we conducted each experiment five times,
it is interesting to investigate the consistency of the experiment
results. We do so by reporting the standard deviation of F1-scores,
precision and recall in Table 4. We see that, on average, 1-to-N and
N-to-1 have low standard deviations with 0.074 and 0.062, respec-
tively. Both 1-to-1 (0.141) and N-to-M (0.160) have higher standard
deviations, N-to-M reaching the maximum across the whole table.
Using GPT-4, the results increase in consistency. N-to-1 reaching



Table 4: The standard deviation of F1-score, precision and
recall (the latter two are presented in brackets) calculated
from five experiment runs. A darker green indicates a lower
standard deviation for the F1-score.

scope GPT-3.5 GPT-4

1-to-1 0.141 (0.23, 0.12) N/A
1-to-N 0.074 (0.09, 0.10) 0.031 (0.07, 0.03)
N-to-1 0.062 (0.05, 0.12) 0.037 (0.05, 0.06)
N-to-M 0.160 (0.23, 0.18) 0.094 (0.10, 0.10)

the overall minimum with 0.031 followed by 1-to-N with 0.037.
N-to-M remains the least consistent but improves to 0.094.

Conclusion. We find that the standard deviation of the F1-scores
remains in acceptable ranges (< 0.1) for 1-to-N and N-to-1 on
both models. With GPT-4, all standard deviations improve further.
We conclude that LLMs are consistent enough to be used in practice
for schema matching.

3.2 Complementarity
It is rare to find matching methods that combine high recall with
high precision. Since in practical data integration scenarios one
needs to manually verify the match candidates that are proposed by
an automated matching algorithm, its preferable from a practical
viewpoint to use a matching algorithm that has very high recall (to
ensure that no candidates are missed) while featuring a decent pre-
cision (to ensure that the verification effort remains manageable).
From Table 2, we observe that using LLMs often enhances recall
compared to the baseline, with this improvement being more pro-
nounced for GPT-4 than for GPT-3.5. Given this observation, we
investigate in this section how complementary the different tasks
scopes are with the baseline and each other. For, if the sets of match-
ing candidates returned by distinct methods 𝐴 and 𝐵 are largely
complementary (in the sense that there is little overlap between
the returned sets), we could further increase recall by combining
the methods 𝐴 and 𝐵 into a method 𝐴&𝐵: the combined method
simply returns the union of the matches of 𝐴 and 𝐵. We must take
care, however, as while the recall of 𝐴&𝐵 may increase compared
to 𝐴 and 𝐵 alone, its precision will almost certainly decrease. As
such, we are also interested in quantifying whether the verification
effort for 𝐴&𝐵 remains reasonable.

Our results in this section are computed using the following
methodology. We refer to an element of {sim𝑁𝐺 , 1-1, 1-N, N-1,
N-M } as a method. Remember from Section 2 that per method we
have repeated each experiment five times. Consequently per pair
(𝑆1, 𝑆2) of distinct methods we have 25 experiment pairs (𝐸1, 𝐸2).
We take the union of the matches resulting from 𝐸1 and 𝐸2 and
analyze this combined match w.r.t. the number of true positives,
the recall, precision, etc. Per pair of methods (𝑆1, 𝑆2) we may com-
pute a dataset-specific average of these methods by summing the
metric result over all 25 experiment pairs, and taking the aver-
age. Importantly, we only combine methods using the same LLM
model (i.e. both use GPT-3.5 or both use GPT-4). Concretely, in
Section 3.2.1 we analyze complementarity of matches by investi-
gating how many additional true positive semantic matches may
be recovered when combining methods. In Section 3.2.2 we offset

Table 5: True semanticmatches foundwhen combiningmeth-
ods. A darker shade of green indicates a higher count. The
diagonal shows the average count of true semantic matches
found by only that method. Recall that the ground truth con-
sists of 49 matches.

GPT-3.5 GPT-4
scope sim𝑁𝐺 1-to-1 1-to-N N-to-1 N-to-M 1-to-N N-to-1 N-to-M

sim𝑁𝐺 19.0 24.2 32.4 37.8 24.2 31.6 38.4 28.6
1-to-1 9.8 29.1 36.6 20.4 N/A N/A N/A
1-to-N 27.0 40.0 29.2 28.2 39.4 29.6
N-to-1 35.4 37.2 38.4 38.5
N-to-M 14.4 21.8

study by the verification effort required when combining methods.
Finally, in Section 3.2.3, we analyze the F1-scores for every method
combination.

3.2.1 Counts of true semantic matches. Table 5 shows the number
of true semantic matches (i.e., true positives) found by combin-
ing methods. Concretely, for method combination (𝑖, 𝑗) and each
dataset we first compute the average number of true positives re-
turned. We then sum these averages over all datasets, and report
this sum in cell (𝑖, 𝑗). The diagonals show the average count of
true semantic matches found by the corresponding method alone,
thus not combined with another method. This number serves as a
reference for the method combinations: numbers for method com-
binations that are higher indicate an increase compared to using
the method alone.

We first discuss the findings for GPT-3.5 and then those for
GPT-4. Remember that there is a total of 49 true semantic matches
in the ground truth (cf. Table 1).

We observe that combining 1-to-N and N-to-1 yields the high-
est count of true semantic matches on average (40 out of 49). N-to-1
by itself uncovers most true semantic matches on average (35.4 for
GPT-3.5), which makes it the best task scope to combine with. We
see that any combination with N-to-1 yields more matches than
any combination without N-to-1. As such, N-to-1 is complemen-
tary with all other methods. This observation even holds when
using the larger GPT-4model, even though the number of semantic
matches found by N-to-1 is higher on average than with GPT-3.5.
The best combination of task scopes without N-to-1 is sim𝑁𝐺 com-
bined with 1-to-N, yielding an average count of 32.4. We note that
this value is worse than using N-to-1 on its own. Overall, 1-to-N
is the second-best combination partner, as every average counts
gets lower if we swap out 1-to-N for any other task scope except
N-to-1. The use of GPT-4 does not notably improve the average
counts of true semantic matches for combinations with 1-to-N
or N-to-1. With N-to-M, however, we do see an increase for all
combinations.

Conclusion. Combining 1-to-N and N-to-1 yields the highest
count of true semantic matches on average. The use of GPT-4 does
not improve this count by much.

3.2.2 Verification effort required. To assess the human effort re-
quired to verify candidate matches we report in Table 6 the size of
the match candidates returned per combined method. Concretely,



Table 6: Verification effort: the count of matches that have to
be inspected when combining two task scopes. The diagonals
show the average matches found by a single task scope. A
darker green indicates less effort. Recall that our total search
space consists of 1839 attribute pairs and there are 49matches
in the ground truth.

GPT-3.5 GPT-4
scope sim𝑁𝐺 1-to-1 1-to-N N-to-1 N-to-M 1-to-N N-to-1 N-to-M

sim𝑁𝐺 77.0 93.2 159.0 185.6 94.0 116.2 134.2 103.4
1-to-1 21.8 110.6 141.0 45.8 N/A N/A N/A
1-to-N 104.6 183.6 112.2 63.8 96.8 69.8
N-to-1 136.2 142.4 84.0 86.4
N-to-M 30.0 42.6

for method combination (𝑖, 𝑗) and each dataset we first compute
the average cardinality of the set of returned match candidates. We
then sum these averages over all datasets, and report this sum in
cell (𝑖, 𝑗). The diagonals show the cardinality of the corresponding
method alone, thus not combined with another method.

A larger cell value means that more candidates need to be in-
spected. Remember from Table 1 that the search space of possible
matchings our benchmark consists of a total of 1839 attribute combi-
nations and there are 49 true semantics matches in the ground truth.
We include the verification effort for 1-to-1 for completeness, but
do not discuss it in detail because of the low result quality.

Overall, we deem most LLM-counts acceptable for manual ver-
ification as they are much smaller (< 10%) than the entire search
space of all attribute pairs. Looking specifically at methods used in
isolation (shown on the diagonal) we observe that with GPT-3.5,
N-to-1 retrieves the most matches (136.2), followed by 1-to-N
(104.6) and N-to-M (30.0). Using GPT-4, the counts of 1-to-N and
N-to-1 are further reduced while the count of N-to-M increases.

When we combine two task scopes, we observe that 1-to-N
combined with N-to-1 retrieves the highest number of match can-
didates, 183.6 to be precise. We deem this acceptable for practical
applications as it represents roughly only 10% of our entire search
space. We note that while 183.6 candidates to inspect may still
seem a lot, these numbers are aggregated over all datasets in our
benchmark. When drilling down to the dataset level there are on
average fewer than 20 candidates to verify using GPT-3.5 (often
much less), which reduces to fewer than 10 candidates to verify
using GPT-4. Compared to the number of possible pairs per dataset
shown in Table 1 this remains very modest.

Conclusion. Our experiments show that the number of retrieved
matches is very reasonable (< 10% of the search space) and can be
reduced further with the use of GPT-4, rendering the verification
effort for all task scope combinations acceptable.

3.2.3 F1-scores. Table 7 presents F1-scores, precision and recall for
all method combinations, averaged over all datasets. The diagonals
represent the average scores for a single task scope and can be
roughly compared to the last row of Table 2, where we report the
average of the median scores. The table is meant to be read row-
wise: the cell in row 𝑖 and column 𝑗 shows how combining method
𝑖 with method 𝑗 behaves compared to using method 𝑖 alone.

First, let us discuss combining sim𝑁𝐺 with the different task
scopes (first row of Table 7). We observe that any combination
of sim𝑁𝐺 with any task scope increases the F1-score compared
to using sim𝑁𝐺 alone own. Using GPT-3.5, 1-to-1 achieves the
highest improvement, yielding an F1-score of 0.384 on average;
N-to-1 has the lowest improvement with 0.344. We see that the
low F1-score of N-to-1 can be attributed to a low precision, as
recall is highest across all combinations including sim𝑁𝐺 . Using
GPT-4 increases the F1-scores further, yielding a maximum F1-score
of 0.456 in combination with N-to-1. These numbers, hence, show
how LLMs strictly improve over string-similarity-based matching.

Overall, we see that combining two task scopes improves the
F1-score. Using GPT-3.5, we see three exceptions: (sim𝑁𝐺 , N-to-1),
where using N-to-1 on its own yields a higher F1-score; (1-to-N,
N-to-1), where the F1-score is lower than using any task scope
on its own; and (1-to-N, N-to-M), where using 1-to-N on its own
yields a higher F1-score. Further, combining 1-to-N or N-to-1with
sim𝑁𝐺 also reduces the F1-score while it improves for 1-to-1 and
N-to-M. We also observe that the combination (1-to-N, N-to-1)
achieves the highest recall of all combinations, even including the
ones using GPT-4. Using the larger model, we see a similar trend
as with GPT-3.5 in that a task scope combination typically im-
proves the average F1-score while combining with sim𝑁𝐺 worsens
it. Further, combining N-to-1 with any other task scope reduces
its F1-score as well, making it the highest performing task scope
based on the average F1-score. Looking at the GPT-4 experiments in
isolation, we again observe that the combination (1-to-N, N-to-1)
achieves the best recall on average.

We note that while the F1-scores are generally not very high, we
see that the task scopes achieve very different scores for precision
and recall. Any combination with N-to-1 generally improves recall
at the cost of precision. For 1-to-N the gap between precision and
recall is similar but less pronounced. In contrast, both 1-to-1 and
N-to-M do not contribute much to recall while keeping precision
level.

Conclusion. Combining task scopes generally improves the F1-
score on most combinations, with N-to-1 using GPT-4 achieving
the highest F1-score.

4 CONCLUSION
In this study, we took an initial step towards utilizing LLMs for
schemamatching.We found that matching quality diminishes when
there is insufficient context information (i.e., task scope 1-to-1)
and when there is an excess of context information (i.e., task scope
N-to-M). The latter is likely hindered by the more complex output
format and the larger number of pairs requiring decisions. The
1-to-N and N-to-1 task scopes effectively provide sufficient con-
text to make accurate matches without overwhelming the decision-
making process. This balance results in a better overall performance
of which the recall can be even further enhanced by adopting a
combined approach using both task scopes in tandem. This com-
bined method successfully identifies a significant number of true
semantic matches with an acceptable verification effort. As such,
we recommend using the combined (1-to-N, N-to-1) method in
practice. We also found that using GPT-4 over GPT-3.5 improves
matching quality and consistency over all task scopes tested on



Table 7: F1-scores, precision and recall for combined methods, averaged over all datasets. The diagonals represent the average
scores for a single task scope and provide the reference point for row-wise comparisons. A green colouring indicates a higher
F1-score compared using the method mentioned in the row on its own, purple indicates a lower F1-score. Note that the precision
and recall scores are also averages and thus do not directly correspond to the F1-scores shown.

GPT-3.5 GPT-4
scope sim𝑁𝐺 1-to-1 1-to-N N-to-1 N-to-M 1-to-N N-to-1 N-to-M

sim𝑁𝐺 0.335 (0.39, 0.42) 0.384 (0.34, 0.53) 0.359 (0.27, 0.69) 0.344 (0.24, 0.78) 0.375 (0.35, 0.53) 0.406 (0.32, 0.63) 0.456 (0.35, 0.78) 0.409 (0.34, 0.59)
1-to-1 0.234 (0.35, 0.19) 0.417 (0.35, 0.62) 0.378 (0.27, 0.76) 0.425 (0.49, 0.44) N/A N/A N/A
1-to-N 0.406 (0.35, 0.59) 0.351 (0.23, 0.83) 0.400 (0.33, 0.64) 0.505 (0.54, 0.58) 0.547 (0.46, 0.80) 0.513 (0.50, 0.61)
N-to-1 0.373 (0.27, 0.73) 0.388 (0.27, 0.78) 0.572 (0.50, 0.78) 0.562 (0.47, 0.78)
N-to-M 0.355 (0.49, 0.35) 0.486 (0.55, 0.48)

both models, and (except for N-to-M) increases decisiveness and
reduces the verification effort. The results in this paper demonstrate
that LLMs have the potential to bootstrap the schema matching pro-
cess and assist data engineers in speeding up this task solely based
on schema element names and descriptions, without the need for
data instances and improving over attribute-name-based matching
alone.

We outline some directions for future work that seem promising.
A benefit of LLMs over the string similarity baseline is that they

can be instructed to provide an explanation as to why they identify
a certain attribute pair as a match or a non-match. We believe that
such explanations can be a valuable instrument for a data engi-
neer tasked to construct a schema mapping, to identify and rectify
misclassifications. Through initial experiments, we have observed
that the LLM sometimes jumps to conclusions as it overemphasizes
similarity of attribute names while disregarding the intent of the
attributes as described in the provided documentation. For instance,
we noticed that the LLM is eager to match two attributes solely
based on the fact that they both refer to the time dimension of an
event even when those events are clearly different. We are currently
working on a tool that facilitates refining schema matchings via
natural language feedback in a pragmatic and user-friendly way.

Our benchmark consists of publicly available schemas. In future
experiments, we will apply our approach on proprietary schemas,
aiming to illustrate the usefulness of using LLMs for schema match-
ing in real-world scenarios.
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