
GFS: Graph-based Feature Synthesis for Prediction over
Relational Database

Han Zhang
Shanghai Jiao Tong University
han.harry.zhang@gmail.com

Quan Gan
AWS Shanghai AI Laboratory

quagan@amazon.com

David Wipf
AWS Shanghai AI Laboratory

daviwipf@amazon.com

Weinan Zhang
Shanghai Jiao Tong University

wnzhang@sjtu.edu.cn

ABSTRACT
Relational databases are widely used in modern information sys-
tems, but traditional machine learning models are often tailored
for single table settings, requiring extensive manual feature engi-
neering to merge data from multiple tables. This process is not
only labor-intensive but also destroys the inherent relational struc-
ture. We introduce Graph-based Feature Synthesis (GFS), a frame-
work that formulates relational databases as heterogeneous graphs,
preserving their relational structure and eliminating the need for
manual feature engineering. GFS leverages single-table model bi-
ases to capture complex relationships within the data. Extensive
experiments on four real-world datasets demonstrate that GFS con-
sistently outperforms existing methods, achieving top rankings and
superior average performance.

VLDBWorkshop Reference Format:
Han Zhang, Quan Gan, David Wipf, and Weinan Zhang. GFS: Graph-based
Feature Synthesis for Prediction over Relational Database. VLDB 2024
Workshop: Tabular Data Analysis Workshop (TaDA).

VLDBWorkshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/zhhhhahahaha/GFS.

1 INTRODUCTION
Data mining involves extracting useful patterns from databases.
Column prediction, where a model predicts values in a target column
of a target table, is essential in many applications, such as click-
through-rate prediction [4, 12, 13, 31], anomaly detection [16, 21,
27, 30], and frequent pattern mining [1, 14, 15].

Most previous works focus on single-table settings, necessitating
the merging of multiple tables into one for feature engineering[24–
26]. This process is labor-intensive, requires substantial domain ex-
pertise, and often destroys the inherent relational structure within
the data, leading to significant information loss. Data scientists
often spend 80% of their time on data integration and curation [3],

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

highlighting the need for automated methods that preserve rela-
tional structure, reduce manual effort, and minimize information
loss.

We propose Graph-based Feature Synthesis (GFS), a novel frame-
work that formulates relational databases as heterogeneous graphs,
preserving their structure and eliminating the need for manual
feature engineering. GFS leverages the inductive biases from differ-
entiable single-tablemodels to capture intricate relationshipswithin
each table, while the graph learning process effectively learns the
structural information present in the database.

Automated methods, such as DFS (Deep Feature Synthesis) [18],
consolidate multiple tables into a single table using predefined rules.
DFS employs depth-first search for feature aggregation but suffers
from low expressiveness and sensitivity to traversal order. OneBM
[20] improves upon DFS by enumerating traversal paths, reducing
variance. R2N extends rule-based aggregation to LSTM [17], while
ARDA [5] automates data augmentation and uses feature selection.
AutoFeature [22] augments features from candidate tables using a
reinforcement learning framework. However, these methods often
lack open-source implementations.

Recent approaches like RDB2Graph [8] convert databases into
graphs and apply Graph Neural Networks (GNNs), but they focus
more on structural information and less on column interactions.
GFS enhances these methods by incorporating residual connections,
allowing the use of any differentiable single-table model as a node
embedding function and prediction model. This design enables GFS
to better capture column interaction patterns while still leveraging
graph learning to capture structural information. Cvetkov et al. [7]
propose a knowledge graph method that enhances target table fea-
tures using related tables, but results show that DFS often performs
best. ATJ-Net [2] constructs hypergraphs to fuse related tables but
struggles with complex schemas.

The main contributions of this paper are:

• We propose GFS, a framework that integrates any differentiable
single-table model as an embedding function and/or prediction
head, leveraging existing model biases and benefit from future
advances in this field.

• Relative to alternative representative paradigms in the mold of
DFS and RDB2Graph, GFS offers targeted improvements, such as
invariance to traversal order, greater expressiveness, and over-
smoothing mitigation.

• Experiments on four real-world datasets demonstrate that GFS
consistently ranks first or second with a basic single-table model,

https://github.com/zhhhhahahaha/GFS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

highlighting its superiority and potential for future enhance-
ments with more robust models.

2 PROBLEM DEFINITION
Relational Databases: A Relational Database (D,L) is comprised
of a collection of tables D = {𝑋 1, 𝑋 2, . . . , 𝑋𝑁 }, where each 𝑋𝑛

represents the 𝑛-th constituent table, and L stands for the set of
relationships between tables. 𝑋𝑛

𝑖,𝑗
represents the entry value of row

𝑖 and column 𝑗 of table 𝑋𝑛 . Each table has at most four types of
columns: Primary Key, Foreign Key, Target Column and Attribute
Column. The target column contains the values to be predicted. Pri-
mary and foreign keys define table relationships. All other columns
with informational content are attribute columns. We use 𝐶𝑛 and
𝑅𝑛 to denote the number of attribute columns and rows in 𝑋𝑛 , re-
spectively. Proceeding further, there are three types of relationships
between two tables, forward, backward, no direct refer as similar to
[18].
Forward: A forward relationship exists when a foreign key in
one table references the primary key in another table, creating a
directional link from one row to another.
Backward: A backward relationship refers to the connection from
a row in one table to all rows in another table that have a forward
relationship to it.

For composite keys and many-to-many relationships, we can
simplify the situation by creating new primary keys and junction
tables. With the necessary terminology and notations defined, we
now introduce the specific task addressed in this paper. Many data
mining problems in a relational database 𝐷 can be formulated as
column prediction, which is our focus. The problem is defined as
follows:

Definition 2.1 (Column Prediction Task). Given a relational data-
base (D,L), predict the values in a target column 𝑋𝑇

:,target of a
target table 𝑋𝑇 ∈ 𝐷 of interest using information available in the
database.

3 THE GFS FRAMEWORK
We present the technical details of the GFS framework for the
column prediction problem specified by Definition 2.1. We first
describe the process of converting a relational database to a graph
with learnable node embeddings. Then, we discuss the core steps of
training and inference: message passing and label prediction. The
overview of GFS is shown in Fig. 1,

3.1 Interpreting Relational Database as Graph
A relational database can be interpreted as a heterogeneous directed
graph. Each row of a table is a node, and all rows within a table
are nodes of the same type. A foreign key reference from 𝑋𝐴

𝑢,𝑖
to

𝑋𝐵
𝑣,𝑗

implies a directed edge from node 𝑢 of type 𝐴 to node 𝑣 of
type 𝐵, foreign key references within the same foreign key column
are considered as edges of the same type. Reverse edges are added
to make the graph a heterogeneous undirected graph, suitable for
aggregating information from other tables to the target table.
Node (Row)’s Raw Features. The values of a row in attribute
columns are regarded as node(row) raw features. Raw node features

of row 𝑋𝑛
𝑖,: are denoted as

𝑥 = [𝑋𝑛
𝑖,1, 𝑋

𝑛
𝑖,2, . . . , 𝑋

𝑛
𝑖,𝐶𝑛

] . (1)

Node (Row) Embedding. The low-dimensional vector encoding
node-wise information is defined as a node embedding. The node
embedding of 𝑋𝑛

𝑖,: is ℎ(𝑖, 𝑛) ∈ R𝑑 , where 𝑛 references the table 𝑋𝑛

and 𝑖 represents the corresponding intra-table row.

3.2 Attribute Column Encoder
Attribute columns are encoded into vectors for prediction. We sup-
port categorical, continuous, and date columns. Categorical values
are mapped to vectors via a learnable look-up table. Continuous
values are normalized and transformed using a linear layer. Dates
are split into year, month, day of month, day of week, and treated as
categorical.

Across data types, we encode each row’s raw features into a se-
quence of real-valued vectors. We denote the whole transformation
as 𝐸𝜃 . The raw features 𝑥 of row 𝑋𝑛

𝑖,: are transformed as:

𝐸𝜃 (𝑥) ∈ R𝐶𝑛×𝑑 , (2)

where 𝜃 represents the learnable parameters.

3.3 Message Passing
We introduce message passing using the node corresponding to
row 𝑖 in table 𝑋𝑛 as an example, with 𝑥 denoting the row’s raw
feature. We define 𝐹 = {𝑋 𝑓1 , . . . , 𝑋 𝑓|𝐹 | } as the set of tables 𝑋𝑛 has
forward relationship to, and 𝐵 = {𝑋𝑏1 , . . . , 𝑋𝑏 |𝐵 | } for backward
relationships.
Node (Row) Embedding Function. The node embedding function
transforms a sequence of real-valued vectors into a dense node
embedding:

𝑁𝜙 : R𝐿×𝑑 → R𝑑 , (3)
𝐿 is different for different node types and 𝜙 represents trainable pa-
rameters. The function can be an MLP, FM [26], or FT-Transformer
[11]. Nodes of the same type share the same embedding function.
Aggregation Function. For tables 𝑋𝑛 has backward relationships
to, we need to aggregate the set of node embeddings which relate
into single vector. The aggregation function is defined as:

Agg𝜓 : P(R𝑑) → R𝑑 , (4)

where𝜓 is the learnable parameter, and P(R𝑑) is the power set of
R𝑑 . We use an aggregation method similar to PNA [6], calculating
the mean, max, min and scaling with different factors, then using
an MLP to combine them into a single vector.
Message Passing Function. Node embeddings are initialized as
®0 ∈ R𝑑 . For each node, the embeddings are updated iteratively, the
notation here is for the example node corresponding to row 𝑖 in
table 𝑋𝑛 :

Mes(𝑖, 𝑛, 𝑙) :=𝑁𝜙

(
concat[𝐸𝜃 (𝑥), ℎ̃𝑙 (𝑖, 𝑓1), . . . , ℎ̃𝑙 (𝑖, 𝑓 |𝐹 |), (5)

Agg𝜓1 (𝑀
𝑙 (𝑖, 𝑏1)), . . . ,Agg𝜓 |𝐵 | (𝑀

𝑙 (𝑖, 𝑏 |𝐵 |))]
)

ℎ𝑙+1 (𝑖, 𝑛) =Mes(𝑖, 𝑛, 𝑙) . (6)

Repeating this 𝑘 times captures (𝑘 − 1)-hop information, with
search depth 𝐾 being the number of iterations.

Relational Database's Schema

MESSAGE PASSING OR LABEL PREDICTION

INFORMATION AUGMENTATION FROM OTHER TABLES

multiple
aggregators scalers

MLP

Aggregation for Backward Relationship

Identity Mapping for Forward Relationship

Label Prediction

Message Passing

Node Embedding Function
New Node Embedding

Prediction Output

Construct
Graph

Offer
offer_id (PK)

0

1

2

History
id (PK) offer_id

0 2

1 1

2 0

Transaction
id

1

1

1

Update
Node

Embedding

Base Model

Figure 1: Overview of the GFS framework using the red-highlighted node as an example. It demonstrates node embedding
updates and predictions for the target node. Some notations are abbreviated, and attribute columns are omitted for simplicity.

• ℎ̃𝑙 (𝑖, 𝑡) = ℎ𝑙 (𝑖𝑡 , 𝑡), where 𝑖𝑡 is the row number in table𝑋 𝑡 that𝑋𝑛
𝑖

has a forward relationship to. ℎ̃𝑙 (𝑖, 𝑓1), . . . , ℎ̃𝑙 (𝑖, 𝑓 |𝐹 |) are 𝑙-step
node embeddings of rows in 𝑋 𝑓1 , . . . , 𝑋 𝑓|𝐹 | .

• 𝑀𝑙 (𝑖, 𝑏1), . . . , 𝑀𝑙 (𝑖, 𝑏 |𝐵 |) are 𝑙-step node embedding sets of rows
in 𝑋𝑏1 , . . . , 𝑋𝑏 |𝐵 | that 𝑋𝑛

𝑖
has backward relationships to.

• 𝑁𝜙 is the node embedding function for each node. The dimen-
sion of 𝐸𝜃 (𝑥) is 𝐶𝑛 × 𝑑 , [ℎ̃𝑙 (𝑖, 𝑓1), . . . , ℎ̃𝑙 (𝑖, 𝑓 |𝐹 |)] is |𝐹 | × 𝑑 , and
[Agg𝜓1 (𝑀

𝑙 (𝑖, 𝑏1)), . . . ,Agg𝜓 |𝐵 | (𝑀
𝑙 (𝑖, 𝑏 |𝐵 |))] is |𝐵 | ×𝑑 . After con-

catenation, the input dimension is (𝐶𝑛 + |𝐹 | + |𝐵 |) × 𝑑 and the
output is a vector of dimension 𝑑 .

3.4 Label Prediction
Base Model. The base model 𝜋𝜔 predicts labels using the final
node embeddings. The model can be any single-table model, such
as MLP, FM, or FT-Transformer. The prediction function for a node
corresponding to row 𝑖 in table 𝑋𝑛 is:

Pred(𝑖, 𝑛, 𝑙) :=𝜋𝜔
(
concat[𝐸𝜃 (𝑥), ℎ̃𝑙 (𝑖, 𝑓1), . . . , ℎ̃𝑙 (𝑖, 𝑓 |𝐹 |), (7)

Agg𝜓1 (𝑀
𝑙 (𝑖, 𝑏1)), . . . ,Agg𝜓 |𝐵 | (𝑀

𝑙 (𝑖, 𝑏 |𝐵 |))]
)

�̃�𝑛𝑖 =Pred(𝑖, 𝑛, 𝑙) . (8)

where �̃�𝑛
𝑖
represents the output prediction vector of GFS by the

example node.

4 COMPARATIVE ANALYSIS
DFS’s Sensitivity to Traversal Order. DFS-based methods are
strong candidates for column prediction tasks on relational databases.
However, DFS’s output is not invariant to traversal order, leading to
different results and potential instability. This traversal order is the
sequence in which DFS traverses different tables using depth-first
search. We detail this issue in Section 5.1 of [29], providing the
pseudo-code of DFS, formal proof, and a counterexample. We also
demonstrate how this sensitivity can cause significant performance
degradation in certain cases using synthetic datasets, and highlight

the robustness of GFS. Additionally, we present a real-world exam-
ple with the same schema as the synthetic datasets, showing that
this issue can occur in real-world scenarios.
GFS generalizes DFS. We show that GFS generalizes DFS, mean-
ing that output of a certain parametrization of GFSwill be a superset
of DFS’s output, details are in Section 5.2 of [29].

5 EXPERIMENTS
5.1 Experimental Setup for Real-World Datasets
5.1.1 Datasets Description and Evaluation Metrics. We evaluate our
model on four real-world datasets: Acquire-valued-shoppers [10],
KDD2015[19], Outbrain [23], and Diginetica[9], covering domains
like customer retention, click-through rate prediction, recommenda-
tion, and fraud detection. We use the area under ROC curve (AUC)
for binary classification tasks.

5.1.2 Baselines and GFS Setting. We compare our method against
two categories of approaches:
Offline Method. These methods first consolidate data into a single
table, then apply single-table models. Besides DFS, we compare:

• Target-table Only (TT): Only the target table is used for predic-
tion.

• Simple join (SJ): Tables are recursively joined by appending
columns without aggregation.

For offline methods, we evaluate DeepFM[12] and FT-Transformer
(FT-T)[11] as base models.
GNNMethods.We compare with RDB2Graph, which embeds rows
into node vectors and applies GNNs, and ATJ-Net, which constructs
hypergraphs for GNNs. We use RGCN, Relational GAT, and HGT
as backbones for RDB2Graph.

Other similar methods like OneBM, R2N, ARDA, and AutoFea-
ture are either proprietary or lack released source code, so we do
not compare with them.
GFS Setting. GFS can use any differentiable model for single table
settings as node embedding functions and base models. We found
that DeepFM performs well for our datasets, making more complex

models unnecessary. FT-T can be helpful for other datasets but has
licensing restrictions that disallow publishing with them.

5.1.3 Parameter Settings. We use Weight & Bias [28] for hyper-
parameter optimization, conducting 50 trials to find the best com-
bination of learning rate, weight decay, and dropout probability
based on validation set performance. Models were rerun five times
to reduce randomness.

Table 1: AUC results for real-world datasets. TT results are
not applicable on datasets where the target table lacks at-
tribute columns. * indicates significant improvements over
baselines with p<0.05, ** indicates p<0.005.

Model
Simple Schema Complex Schema

Rank
AVS KDD15 Outbrain Diginetica

Max Search Depth (hops) 𝐾 2 2 4 3 -

TT + DeepFM 0.6737 - - - 10.0
TT + FT-T 0.6720 - - - 11.0
SJ + DeepFM 0.6902 0.6297 0.7223 0.6278 8.0
SJ + FT-T 0.6894 0.6061 0.7188 0.6100 9.0

RDB2Graph + RGCN 0.6956 0.8557 0.7420 0.7420 6.0
RDB2Graph + GAT 0.6978 0.8629 0.7440 0.7565 4.0
RDB2Graph + HGT 0.6957 0.8719 0.7549 0.8070 3.0

DFS + DeepFM 0.6974 0.8717 0.7337 0.7963 4.3
DFS + FT-T 0.6916 0.8626 0.7303 0.8024 5.5

ATJ-Net 0.6968 0.8812* 0.7302 0.7999 4.0

GFS (Ours) 0.7001** 0.8781 0.7558* 0.8106* 1.3

Table 2: Training time (hours) for different models on
g4dn.metal. Results are reported below the maximum search
depth due to OOM issues at larger depths for some methods.

Model AVS KDD15 Outbrain Diginetica

Search Depth(hops) K 2 2 3 2

RDB2Graph + RGCN 0.25 0.56 3.50 2.07
RDB2Graph + GAT 0.33 0.51 5.00 1.75
RDB2Graph + HGT 1.17 2.45 8.31 4.97
ATJ-Net 0.34 0.09 12.79 0.60
GFS (Ours) 0.60 0.39 4.05 1.84

5.2 Performance & Training Time Comparison
The results for four real-world datasets are shown in Table 1. We
report optimal results for each method, ensuring search depth does
not exceed the maximum allowed. The maximum search depth is
set to fully traverse all relationships while maintaining reasonable
training times and GPU memory usage. Online sampling models
like GFS are compared with other GNN models, while offline sam-
pling baselines like DFS and SJ cannot be fairly compared as they
aggregate information prior to model training. Training time results
are in Table 2. Key observations are as follow:
• GFS outperforms baselines on AVS, Outbrain, and Diginetica, and

ranks second on KDD15, achieving the best average performance.
Other models struggle on certain datasets; HGT performs well on
Outbrain but poorly on AVS. DFS, RGCN, and GAT underperform
across all datasets.

• When a lower search depth is sufficient to reach all tables and
cover all PK-FK relationships (e.g., AVS and KDD15 with 𝐾 = 2),
ATJ-Net is a strong baseline with performance similar to GFS.
However, for more complex schemas requiring higher search
depths (e.g., Outbrain and Diginetica with 𝐾 = 4 and 𝐾 = 3), GFS
significantly outperforms ATJ-Net. This aligns with the ATJ-Net
paper’s findings, which note overfitting issues as search depth 𝐾
increases beyond 2. While ATJ-Net suggests random architecture
search to mitigate this, our findings hold even after thorough
architecture and hyperparameter tuning.

• Despite HGT’s strong performance, GFS combined with DeepFM
is more efficient, requiring only at most half training time com-
pared to HGT.

Table 3: AUC results of GFS + DeepFM with different node
embedding functions (𝑁𝜙).

𝑁𝜙 AVS KDD15 Outbrain Diginetica

MLP 0.6949 0.8660 0.7540 0.8095
DeepFM 0.7001 0.8781 0.7558 0.8106

5.3 Ablation Study
We analyze the impact of node embedding function in GFS. While
choosing an advanced single table model as base model 𝜋𝜔 for
final prediction is straightforward, using a differentiable single
table model like DeepFM for row embedding function 𝑁𝜙 may
seem redundant at first glance. However, this is a key distinction of
GFS compared to prior GNNs which only use MLP. This approach
incorporates inductive bias to extract column interaction patterns
into the node embedding. To demonstrate the importance of this
design, we use DeepFM as the base model but change 𝑁𝜙 from
DeepFM to MLP. The results in Table 3 highlight the significance
of the node embedding function. Key observations are as follows:

• In AVS and KDD15 datasets, replacing DeepFM with MLP for
𝑁𝜙 significantly drops performance, indicating the importance
of feature interactions from DeepFM for non-target tables.

• In Outbrain and Diginetica datasets, the row embedding function
has less impact on performance, likely because target column
prediction relies more on relationships between rows in different
tables rather than row feature interactions. This is supported by
similar performance between GFS and HGT, where MLP is used
for node embedding vectors.

6 CONCLUSION
In this paper, we introduce GFS, a novel framework for general col-
umn prediction tasks on relational databases. GFS is an embedding
update and prediction framework that integrates any differentiable
model designed for single table settings. It improves upon previous
methods like DFS, RDB2Graph, and ATJ-Net, addressing their in-
herent issues. Comprehensive experiments on real-world datasets
demonstrate that GFS outperforms baselines and exhibits supe-
rior efficiency compared to the most powerful GNN baseline, HGT.
These results highlight GFS’s potential as an effective and efficient
solution for machine learning tasks on relational databases.

REFERENCES
[1] Rakesh Agrawal, Ramakrishnan Srikant, et al. 1994. Fast algorithms for mining

association rules. In Proc. 20th int. conf. very large data bases, VLDB, Vol. 1215.
Santiago, Chile, 487–499.

[2] Jinze Bai, Jialin Wang, Zhao Li, Donghui Ding, Ji Zhang, and Jun Gao. 2021. ATJ-
Net: Auto-Table-Join Network for Automatic Learning on Relational Databases.
In Proceedings of the Web Conference 2021. 1540–1551.

[3] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020.
Creating Embeddings of Heterogeneous Relational Datasets for Data Integration
Tasks. In Proceedings of the 2020 ACM SIGMOD International Conference on Man-
agement of Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing
Machinery, New York, NY, USA, 1335–1349. https://doi.org/10.1145/3318464.
3389742

[4] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[5] Nadiia Chepurko, Ryan Marcus, Emanuel Zgraggen, Raul Castro Fernandez, Tim
Kraska, and David Karger. 2020. ARDA: Automatic Relational Data Augmentation
for Machine Learning. Proc. VLDB Endow. 13, 9 (may 2020), 1373–1387. https:
//doi.org/10.14778/3397230.3397235

[6] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar
Veličković. 2020. Principal neighbourhood aggregation for graph nets. Ad-
vances in Neural Information Processing Systems 33 (2020), 13260–13271.

[7] Alexis Cvetkov-Iliev, Alexandre Allauzen, and Gaël Varoquaux. 2023. Relational
data embeddings for feature enrichment with background information. Machine
Learning 112, 2 (2023), 687–720.

[8] Milan Cvitkovic. 2020. Supervised learning on relational databases with graph
neural networks. arXiv preprint arXiv:2002.02046 (2020).

[9] diginetica 2016. https://competitions.codalab.org/competitions/11161
[10] DMDave, Todd B, and Will Cukierski. 2014. Acquire Valued Shoppers Challenge.

https://kaggle.com/competitions/acquire-valued-shoppers-challenge
[11] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. 2021.

Revisiting deep learning models for tabular data. Advances in Neural Information
Processing Systems 34 (2021), 18932–18943.

[12] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction.
arXiv preprint arXiv:1703.04247 (2017).

[13] Wei Guo, Can Zhang, Zhicheng He, Jiarui Qin, Huifeng Guo, Bo Chen, Ruiming
Tang, Xiuqiang He, and Rui Zhang. 2022. Miss: Multi-interest self-supervised
learning framework for click-through rate prediction. In 2022 IEEE 38th interna-
tional conference on data engineering (ICDE). IEEE, 727–740.

[14] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. 2007. Frequent pattern
mining: current status and future directions. Datamining and knowledge discovery
15, 1 (2007), 55–86.

[15] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining frequent patterns without
candidate generation. ACM sigmod record 29, 2 (2000), 1–12.

[16] Songqiao Han, Xiyang Hu, Hailiang Huang, Minqi Jiang, and Yue Zhao. 2022. Ad-
bench: Anomaly detection benchmark. Advances in Neural Information Processing
Systems 35 (2022), 32142–32159.

[17] SeppHochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[18] James Max Kanter and Kalyan Veeramachaneni. 2015. Deep feature synthesis:
Towards automating data science endeavors. In 2015 IEEE international conference
on data science and advanced analytics (DSAA). IEEE, 1–10.

[19] kddcup 2015. https://www.biendata.xyz/competition/kddcup2015/
[20] Hoang Thanh Lam, Johann-Michael Thiebaut, Mathieu Sinn, Bei Chen, Tiep Mai,

and Oznur Alkan. 2017. One button machine for automating feature engineering
in relational databases. arXiv preprint arXiv:1706.00327 (2017).

[21] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In 2008
eighth ieee international conference on data mining. IEEE, 413–422.

[22] Jiabin Liu, Chengliang Chai, Yuyu Luo, Yin Lou, Jianhua Feng, and Nan Tang.
2022. Feature augmentation with reinforcement learning. In 2022 IEEE 38th
International Conference on Data Engineering (ICDE). IEEE, 3360–3372.

[23] mjkistler, Ran Locar, Ronny Lempel, RoySassonOB, Rwagner, and Will Cukierski.
2016. Outbrain Click Prediction. https://kaggle.com/competitions/outbrain-
click-prediction

[24] Kwanghyun Park, Karla Saur, Dalitso Banda, Rathijit Sen, Matteo Interlandi,
and Konstantinos Karanasos. 2022. End-to-end optimization of machine learn-
ing prediction queries. In Proceedings of the 2022 International Conference on
Management of Data. 587–601.

[25] Yanru Qu, Bohui Fang, Weinan Zhang, Ruiming Tang, Minzhe Niu, Huifeng
Guo, Yong Yu, and Xiuqiang He. 2018. Product-based neural networks for user
response prediction over multi-field categorical data. ACM Transactions on
Information Systems (TOIS) 37, 1 (2018), 1–35.

[26] Steffen Rendle. 2010. Factorizationmachines. In 2010 IEEE International conference
on data mining. IEEE, 995–1000.

[27] Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. 2022. Rethinking graph neural
networks for anomaly detection. In International Conference on Machine Learning.
PMLR, 21076–21089.

[28] Weight & Bias 2023. https://wandb.ai/site
[29] Han Zhang, Quan Gan, David Wipf, and Weinan Zhang. 2023. GFS:

Graph-based Feature Synthesis for Prediction over Relational Databases.
arXiv:2312.02037 [cs.LG] https://arxiv.org/abs/2312.02037

[30] Yue Zhao and Maciej K Hryniewicki. 2018. Xgbod: improving supervised outlier
detection with unsupervised representation learning. In 2018 International Joint
Conference on Neural Networks (IJCNN). IEEE, 1–8.

[31] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through
rate prediction. In Proceedings of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining. 1059–1068.

https://doi.org/10.1145/3318464.3389742
https://doi.org/10.1145/3318464.3389742
https://doi.org/10.14778/3397230.3397235
https://doi.org/10.14778/3397230.3397235
https://competitions.codalab.org/competitions/11161
https://kaggle.com/competitions/acquire-valued-shoppers-challenge
https://www.biendata.xyz/competition/kddcup2015/
https://kaggle.com/competitions/outbrain-click-prediction
https://kaggle.com/competitions/outbrain-click-prediction
https://wandb.ai/site
https://arxiv.org/abs/2312.02037
https://arxiv.org/abs/2312.02037

	Abstract
	1 Introduction
	2 Problem Definition
	3 The GFS Framework
	3.1 Interpreting Relational Database as Graph
	3.2 Attribute Column Encoder
	3.3 Message Passing
	3.4 Label Prediction

	4 Comparative Analysis
	5 Experiments
	5.1 Experimental Setup for Real-World Datasets
	5.2 Performance & Training Time Comparison
	5.3 Ablation Study

	6 Conclusion
	References

