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ABSTRACT
To unify source tables, various industries including healthcare,
marketing, and government have established standardized tar-
get databases. Transforming source tables into these databases,
while utilizing automated tools for schema matching and col-
umn transformation, remains challenging when combining
them end-to-end. This paper proposes a novel framework us-
ing Large Language Models (LLMs): we decompose the trans-
formation task following an "overview, zoom-in, zoom-out"
pattern. Our experiments indicate a significant improvement
in accuracy from 14.35% to 54.78%. We conclude by analyzing
the errors and propose further research directions.
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Zezhou Huang, Jia Guo, and Eugene Wu. Transform Table to
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Tabular Data Analysis Workshop (TaDA).

VLDBWorkshop Artifact Availability:
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1 INTRODUCTION
Source tables are difficult to use due to their varied formats [19].
To address this, industries have established standardized tar-
get databases. For instance, in healthcare, the OMOP Com-
mon Data Model (CDM)[3] standardizes tables like person,
encounter, and payment, and organizes relationships using
primary and foreign keys (PK/FK). The OMOP CDM has con-
verted ∼12% of Electronic Medical Records globally, covering
>928 million patient records in 41 countries[10]. Similarly,
industries such as sales, marketing, and supply chain, as well
as healthcare, use similar CDMs [1]. Additionally, government
agencies use a specific spending data model for managing fi-
nancial data [2]. All of these necessitate the transformation
from source tables to the standardized target database.

To facilitate such transformation, previous works have au-
tomated only parts of the process, which still requires sig-
nificant manual effort. One class of works is schema match-
ing [5, 8, 20, 22, 26]: these works create mappings between
source and target columns based on aspects like column names
and cell value similarity. However, matching the columns is
just the first step. These columns could have different value
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representations and span multiple tables that often require ex-
tensive coding to transform. Another class of works automates
such column transformation, either through an interactive in-
terface [9, 17] or Programming-By-Example (PBE)[11, 16, 27].
While these are effective for columns within single tables,
handling columns that span multiple tables poses greater chal-
lenges due to the need for joins, selection, aggregation, and
groupby. As a result, in domains like healthcare, the de facto
integration tool, WhiteRabbit[4], is still entirely manual.

While transforming the source tables to target databases
was challenging due to the the variety of complex issues to be
addressed, recent advances in Large Language Models (LLMs)
make it appealing to revisit these challenges. LLMs exhibit
strong few-shot learning capabilities [6]: previous works have
demonstrated their SOTA performance in subtasks like schema
matching [24] and column transformations [15, 23].

This paper studies the problem of table-to-database trans-
formation using LLMs. Our experiment shows that, while cur-
rent LLMs are already adept at schema matching and column
transformations, directly prompting them to transform the
source table to the target database end-to-end is still too over-
whelming, achieving only 14.35% accuracy. Instead, we build a
framework that breaks down the table-to-database transforma-
tion; such a process of task decomposition for LLMs has been
shown to be critical for the accuracy and robustness of various
data tasks like visualization and transformation [7, 15, 18, 24].
Our main insight behind the break-down is that, such transfor-
mation follows a "overview, zoom-in, zoom-out" pattern. To
illustrate the challenge, consider the example transformation
of patient data from Synthea to the OMOP CDM [25].

Example 1. The Patient table from Synthea [25], as a data
source, contains synthetic patient information such as birth/death
dates and addresses. Transforming it to the OMOP CDM involves
several steps, as illustrated in Figure 1. (1) Overview for Schema
Matching: We first select the target tables in the OMOP CDM
that contain columns which can be mapped from the source.
Here, three tables are selected: Person, Location, and Death. (2)
Zoom-in for Table Transformation: For each target table, we
transform columns, including extracting the year, month, and
day from the birth date, and selecting individuals who have died
(where the clause for the death date is not null) for the Death ta-
ble. (3) Zoom-out for PK/FK: PK/FK (e.g., person_id, location_id)
cannot be directly derived from the source table alone but require
coordination across other tables in the database for referential
integrity. For example, location_id in the Person table depends on
the assignment of the primary key in the Location table. There-
fore, we track the lineage between records and assign the FK
based on how the PK is assigned.
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Figure 1: Table-to-Database Transformation Example, from Patient (Synthea) to OMOP CDM.

We therefore decompose the problem for LLMs according
to the following pattern: we start with mapping to the target
database as a whole (overview), then delve into each table
(zoom-in), and finally establish PK/FK relationships between
the target tables (zoom-out), achieving 54.78% accuracy. We
further analyze the errors made during these transformations
and suggest directions for future improvements.

2 APPROACH OVERVIEW
We start with the problem, and then present our approach.

2.1 Problem definition
Problem 1. Table-to-Database Transformation. Given an

input table 𝑇 and a target database schema defined as a set of
tables {𝑇1,𝑇2, . . . ,𝑇𝑛}, the task is to find a transformation F
such that F (𝑇 ) is correctly transformed to the target database.

While F could be an arbitrary mapping function, in this short
paper, we limit F to a list of SQL statements that create ta-
bles based on SPJA (Select-Project-Join-Aggregate) queries for
simplicity. SQL-based transformations manipulate the table as
a whole; however, sometimes row-based manipulation/map-
ping is needed. For example, for OMOP CDM, we need to
standardize medical concepts (e.g., "Emergency Vehicle" to
"Ambulance"). Such standardization requires looking up the
terms, essentially an entity matching, for each row, which is
challenging for SQL [12]. We leave these as future work.

2.2 System Design
To solve Problem 1, directly prompting the LLMs with the
source table, target database schema, and the task instruction
in one shot yields poor results, as we show in Section 3. There-
fore, we have designed a task decomposition layer on top to
enhance performance. Our design is illustrated in Figure 2.

2.2.1 Target Database (Offline). During the offline phase, we
create detailed descriptions for the target database; these are
used online during the transformation process for contexts.
The input for this phase includes, at a minimum, the schema of
the target database tables. This input facilitates the inclusion of
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Figure 2: System design for Table-to-Database Transfor-
mation. Each box corresponds to a decomposed task.

contextual descriptions of the target databases for additional
context. In this phase, we prompt the LLMs to extract results
from the given contextual descriptions if the information is
available, or to make the best guess. In practice, this step is
intended to be completed once offline and verified by the data
provider. Next, we walk through each component:
Database Description. This LLM component provides de-
scriptions of databases and how their tables are related. To
ensure the description covers all target tables comprehensively,
each table is specifically mentioned and highlighted (enclosed
in **). We utilize a Python program to verify that all tables are
appropriately enclosed, and we retry if not.
PK/FK Identification.With the database description and the
schema of all tables at hand, this LLM component identifies
the PK-FK relationships between tables. The output consists
of two dictionaries: for each table, dictionary 1 maps to its
PK, if it exists, and dictionary 2 maps it to another dictionary,
where each key is another table and the value is their FK.
TableDescription.Using the database and target schema, this
LLM component describes each table. Similar to the database



description, to ensure comprehensiveness, each columnwithin
the tables is mentioned and highlighted in table description.
Column Description. Given the table description, this com-
ponent describes each column, and data type (e.g., int, string).
Table Example. Based on the table and its column descrip-
tions, this component provides an example of the target table.
The output is a sample table consisting of 5 rows.

2.2.2 Transformation (Online). During the online phase, we
transform the input table to the target database using (1) the
input table, and (2) target database description prepared offline.
Table Profile. This LLM component profiles the input table
using Cocoon [14]. It generates the description of the table,
columns, data types and missing values.
Table Selection. Based on the descriptions and samples of
the input table and target database, this selects all the relevant
target tables. The output is a list of potential target tables.
Table Verification. This component examines each potential
target table more closely. Some tables may be relevant but un-
suitable for transformation. For example, the patient table in
Synthea includes total medical spending, which relates to the
cost table in OMOP CDM at a high level but cannot be trans-
formed due to the impossibility of reversing aggregation. For
each target table, we provide descriptions and samples for both
the input and target tables (excluding PK/FK columns), and
ask the LLM to verify whether the transformation is possible
(true/false) and provide transformation instructions.
Code Writing and Debug. Following the transformation
instructions, this LLM component writes SQL code for the
table-to-table transformation. It constructs templated SQL for
(a) whether to use distinct (true/false), (b) selection clauses, (c)
where clauses, (d) group by clauses, and (e) where clauses. The
SQL code is then sent to a debugging component to ensure it
runs correctly in the database. It iteratively runs the SQL in
the database and debugs based on the error messages, with up
to 10 debugging iterations allowed. Note that the code does
not execute to create the target table because additional PK
and FK columns are not created during this step.
PK/FK Connection.We find that current LLMs fail at han-
dling PK/FK for referential integrity (Section 3); furthermore,
after we identify the selected columns for each target table,
PK/FK can be directly constructed without the need for se-
mantic understanding by LLMs [19, 22]. We therefore use a
non-LLM component to create PK and FK. This process begins
by enriching the input table with all additional columns from
the selection clauses, excluding aggregation columns. For each
target table requiring a PK, the PK is created based on the need
for distinct values. If distinct values are required, the PK is
generated using a unique value (e.g., MD5 hash) over the en-
riched attributes in the selection clauses. If distinct values are
not necessary, a unique column for each row is created (cur-
rently using rowid). If the selection involves aggregation, this
implicitly requires distinct values because the group by key is
different. The FK is simply selected from the corresponding
PK (potentially also with a rename).
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Figure 3: Target Database Schema. Each edge is a PK/FK.

3 EXPERIMENT

Table 1: Transformation Accuracy over 10 runs from
the different source tables. Decomposed method greatly
improves accuracy from 14.35% to 54.78%.

Database Source Table Direct Decomposed

SSB

customer 0% 80%
date 100% 0%
lineorder 30% 70%
part 80% 100%
supplier 0% 70%

Synthea

allergies 0% 100%
careplans 0% 30%
claims 0% 0%
claims_transactions 0% 0%
conditions 0% 100%
devices 0% 100%
encounters 0% 20%
imaging_studies 0% 0%
immunizations 0% 20%
medications 0% 10%
observations 0% 0%
organizations 0% 100%
patients 0% 100%
payer_transitions 100% 100%
payers 20% 40%
procedures 0% 70%
providers 0% 100%
supplies 0% 50%

Total 14.35% 54.78%



Table 2: Errors made by Direct for Patient (Synthea) to OMOP CDM Transformation. Direct struggles with syntax
errors in date parsing due to the lack of debugging, omitting ’Distinct’ in selections, incorrect PK/FK assignments, and
fails to include necessary target tables in transformations.

Table Selection Distinct Clause Selection Clause Where Clause FK PK

Person 0% 0% 100% 0% 100% 0%
Death 20% 0% 0% 0% 0% 0%
Location 0% 100% 0% 0% 100% 100%

Benchmarks.We conduct experiments using the following
target databases (schema in Figure 3) and source tables:
• TPC-H. For the data source, we use tables from the Star

Schema Benchmark [21], which is a simplified TPC-H.
• OMOP CDM [3]. Note that OMOP CDM has columns for

concept IDs in its standardized vocabularies, which require
an entity matching problem that is beyond the scope of
SPJA queries; we have removed these columns from the
target database schema and documentation. For the data
source, we use tables from Synthea [25], which has syn-
thetic elecontronic health care records.

Methods. We provide both the target schema and its related
documents for the offline phase to generate descriptions for
tables, columns, as well as the PK/FK relationships and table
examples. Then, we compare two methods for transformation:
• Direct. This method uses the results from the offline phase

and directly provides the input table samples to the LLM,
asking it to generate the SQL queries in one prompt.

• Decomposed. This method corresponds to the decomposed
design discussed in Section 2.2.2.

We use GPT-4 Turbo as the LLM and DuckDB as the database.
We inform the LLM about DuckDB in the prompt whenwriting
SQL to ensure the correct syntax. We run each methods 10
times (temperature=0.1), and record the accuracy.
Evaluation. For correctness evaluation, transformation to
TPC-H is straightforward, and we verify equality between the
transformed target database and the ground truth database. For
columns in the target tables that are not transformable, exclud-
ing these columns or setting them to NULL are both considered
correct. However, for OMOP CDM, many columns have am-
biguous meanings [13]; we manually judge if the transforma-
tion codes are acceptable. For example, the "value_as_string"
column in the OBSERVATION table is described in the docu-
mentation as "the categorical value of the result of the obser-
vation," but it lacks clarification on which types of results are
included and how they should be represented. In the case of the
allergies source table, the system constructs "value_as_string"
by concatenating the columns of ’Reaction’, ’Description’, and
’Severity’. While this is not the only choice, it is a reasonable
one, and we consider it as correct.
Results.The experiment results are shown in Table 1. Decomposed
significantly improves accuracy over Direct from 14.35% to
54.78%; it outperforms Direct in all but one task. To under-
stand where Direct falls short, we conduct a detailed case

study of errors in the transformation from Patient to OMOP
CDM. The results are shown in Table 2. Specifically, (1) it
makes syntax errors in SELECTION when parsing dates for
Person, which could potentially be fixed by employing de-
bugging, (2) it fails to add ’distinct’ for Location, (3) it fails
in PK/FK assignments, and (4) it fails to include the Death
target table 20% of the time. In general, we find that current
LLMs are already proficient at schema matching and column
transformation, but frequently makes errors in detailed issues.
Decomposing the tasks makes it better at attending to details.

For Decomposed, aside from a few obvious column map-
ping errors (e.g., confusing procedure dates with a person’s
birthday), it encounters the following challenges:

• Abstract and Physical Concepts. In SSB, dates are stored
in a dimension table as abstract concepts, while in LINEITEM
and ORDERS of TPC-H, dates are part of fact tables repre-
senting physical dates. Transformations can only be made
from physical to abstract, not the reverse, even when they
involve the same concept. Direct tends to take amore holis-
tic approach and correctly returns an empty SQL, whereas
Decomposed tries to transform based on concept similarity.

• IS-A Relationship. OMOP CDM includes tables that fol-
low an IS-A relationship, where entities like Condition,
Procedure, Drug, Specimen, Measurement, or Device are all
"IS-A" to Observations. The CDM documentation specifies
that records not fitting these specific categories should be
stored in the Observations table. Such IS-A relationship are
currently not represented by PK/FK and might require rep-
resentations like ER diagrams. This leads to low accuracy
in transforming image_studies and observations. Building
such ER diagrams and integrating them into LLMs prompts
is an interesting future work.

• Domain-Specific Knowledge: Numerous issues require
nuanced, domain-specific knowledge. For instance, "en-
counter" in a healthcare context refers to visits within the
healthcare system, but LLMs often confuse it with the oc-
currence of a medical condition, leading to low accuracy
for procedures, claims, and claims_transaction. Addition-
ally, LLMs mistakenly interpret care plans (e.g., "Fracture
care") as the condition (e.g., "Fracture") itself, resulting in
low accuracy for careplans. Another complex area is cost
aggregation, which relies on domain-specific formulas and
leads to low accuracy for medications and suppliers. For
example, Total Patient Cost is calculated by the formula
(Base Cost - Payer Coverage) × Number of Dispenses.



4 CONCLUSION
This paper introduced a framework that decomposes Table-to-
Database transformations for LLMs based on the "overview,
zoom-in, zoom-out" pattern. Looking ahead, several improve-
ments can be made: (1) Refining methods to handle abstract
and physical concepts in databases; (2) Enhancing the represen-
tation of IS-A relationships in schemas, potentially through the
integration of ER diagrams; (3) Incorporating domain-specific
knowledge, potentially through documentation and retrieval.
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