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ABSTRACT
A recent line of work applies Large Language Models (LLMs) to
data engineering tasks on tabular data, suggesting they can solve
a broad spectrum of tasks with high accuracy. However, existing
research primarily uses datasets based on tables from web sources
such as Wikipedia, calling the applicability of LLMs for real-world
enterprise data into question. In this paper, we perform a first anal-
ysis of LLMs for solving data engineering tasks on a real-world
enterprise dataset. As an exemplary task, we apply recent LLMs to
the task of column type annotation to study how the data charac-
teristics affect the LLMs’ accuracy and find that LLMs have severe
limitations when dealing with enterprise data. Based on these find-
ings, we point towards promising directions for adapting LLMs to
the enterprise context.
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1 INTRODUCTION
Data engineering is highly relevant. Data engineering on tabu-
lar data is crucial for transforming raw data sources into a form that
is suitable for downstream tasks such as analytical query processing
and machine learning. It encompasses a range of tasks spanning
the entire data lifecycle, from data discovery and integration to
data cleaning. As many of these tasks incur high manual efforts
to apply existing tools to the specific data at hand, the automa-
tion of individual data engineering tasks such as missing value
imputation [20], de-duplication [22, 23], and column type annota-
tion [10, 12, 14, 18, 31] with the help of machine learning has long
been an active area of research. Nevertheless, adapting machine
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learning approaches to new datasets and tasks often requires com-
puter science expertise, thus rendering them inaccessible to a broad
range of practitioners.

LLMs to the rescue? Recent papers have shown that Large Lan-
guage Models (LLMs) such as GPT-4 [5] can be directly applied to
data engineering tasks on tabular data, indicating that they achieve
state-of-the-art results on multiple data engineering tasks without
requiring task-specific architectures and training [11, 21]. Apart
from these initial evaluations, further attempts have been made
to adapt LLMs for specific data engineering tasks such as entity
matching [24] and column type annotation [14]. Nonetheless, we
do not fully share the current optimism that LLMs can solve data
engineering problems on tabular data out-of-the-box because exist-
ing evaluations primarily build on tables from web sources, which
do not fully represent the real-world complexity of tabular data.

Enterprise data: An overlooked challenge. Tables in publicly
available corpora are often crawled from web resources like Wiki-
pedia [2] and GitHub [9]. However, tabular data from companies
running their business processes with software systems like those
from SAP fundamentally differs from these web tables in many
aspects, including table sizes, data types, and industry-specific do-
mains [25, 30]. Since LLMs are typically trained on public data
scraped from the web [1, 3], it is reasonable to assume that they
have not seen significant amounts of such enterprise data during
their training, which may cause limited understanding. We, there-
fore, suspect that previous evaluation results on publicly available
datasets do not extend to real-world enterprise settings.

Contributions. In this work, we thus perform a first evaluation
of LLMs for data engineering on real-world enterprise data. The
concrete contributions of this paper are: (1) We analyze the char-
acteristics of enterprise data from real-world customer systems
in comparison to publicly available table corpora. (2) We perform
experiments on this data using the task of column type annotation
as a first example to expose the shortcomings of LLMs on enterprise
data. (3) We provide directions for future research to improve the
automation of data engineering tasks on enterprise data.

2 ANATOMY OF ENTERPRISE DATA
In this section, we make an attempt to quantify the anatomy of
enterprise data using real-world customer data from SAP systems.
While there are clearly many more enterprise systems besides SAP,
SAP stands out as a dominating player in enterprise software sys-
tems across multiple industries worldwide. Moreover, enterprise
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Table 1: Data characteristics of publicly available web table corpora compared to representative customer data from SAP.
Enterprise tables are substantially larger in terms of rows and columns and display a higher sparsity. Although most
attributes are of type NVARCHAR, the data is highly symbolic.

#tables #columns #rows sparsity1 data types2 column type annotations

med 95th med 95th abc 123 #column types #labeled columns

WikiTables-TURL 397, 098 1 3 8 43 0.12 1.00 0.00 255 628, 254
SOTAB 59, 548 7 17 33 721 0.08 0.85 0.15 91 162, 351
GitTablesCTA 1, 100 12 33 25 263 0.12 0.33 0.67 122 | 593 2, 517 | 1, 3743
SportsTables 1, 183 21 31 32 924 0.07 0.16 0.84 452 24, 821

EnterpriseTables 1004 46 341 384, 320 43, 758, 473 0.43 0.865 0.14 5, 063 8, 066
1 Sparsity is the fraction of empty table cells. 2 Non-numeric (abc) and numeric (123) columns determined by pandas (publicly available datasets) and SQL (EnterpriseTables).
3 Annotations using semantic types from DBPedia | Schema.org. 4 We experiment on a representative sample from multiple thousand tables from the real-world system.
5 Includes symbolic values such as IDs stored as NVARCHAR.

data is usually highly confidential and, therefore, hard to use in eval-
uations. As such, we believe that our insights based on SAP data are
highly valuable on their own and hope that our paper inspires other
researchers with access to similar enterprise datasets to repeat the
evaluations on their data. Moreover, some of the core characteris-
tics of SAP data reflect the findings from other papers observing
the differences between enterprise and web data [13, 25, 30, 32].

Our corpus. To study the differences between web tables and
enterprise data, we create a new corpus called EnterpriseTables us-
ing the real-world customer data from SAP. The corpus spans a
diverse set of business domains such as Finance, Sales and Distri-
bution, Material Management, and Production Planning. For the
purpose of this paper, we select 100 representative tables from the
larger corpus, which contains multiple thousands of tables. In the
following, we compare this new corpus to four existing publicly
available table corpora, namely WikiTables-TURL [4], SOTAB [15],
GitTablesCTA [8], and SportsTables [17].

Tables are substantially larger and wider. A first important ob-
servation is that enterprise tables typically have substantially more
rows and columns than the tables in public corpora. As shown in
Table 1, some tables have hundreds of columns and millions of rows.
While this is a well-established data management problem [32], the
large scale poses challenges for LLMs, which have limited context
windows. Moreover, while recent LLMs have extended context win-
dows, feeding large tables into LLMs has other downsides since
not only latency and cost depend on the input size, but also re-
cent studies have shown that long contexts can lead to degraded
performance for data residing in the “middle” [19].

Tables are highly sparse. A second insight is that enterprise data
is highly sparse. Table 1 shows that on average, 43% of the cells
in enterprise tables are empty, compared to only 7-12% in existing
datasets. Moreover, we find that in addition to empty values, the
cells in enterprise tables often contain dummy values such as 00000
that also denote the absence of an actual value.

Schemas are not descriptive. Another important insight repli-
cated here is that schema properties like table and column names
are often not descriptive but rather abbreviations that can only

be understood with background knowledge or additional meta-
data [13]. This additional metadata is often unavailable or may not
fit into the context window of the LLM. Moreover, the background
knowledge is often specific to the particular enterprise, causing
challenges for LLMs trained exclusively on publicly available data.

Data are complex. Surprisingly, we find that only 14% of the
columns are of numerical data types such as DECIMAL and INTEGER,
challenging the popular assumption that enterprise data is predom-
inantly numerical [17]. Nevertheless, closer inspection of the actual
data reveals that the non-numerical data type NVARCHAR is often
used to store symbolic values and codes such as invoice and mate-
rial numbers, which is in line with previous findings [30]. Therefore,
we believe that a more fine-grained investigation of values beyond
numeric and non-numeric data types is needed in future work.

Entities are represented by multiple tables. Finally, a last im-
portant characteristic is that whereas existing tabular datasets are
usually collections of self-contained tables, data in enterprise con-
texts typically describes business objects such as invoices and orders
that span across multiple connected tables. For example, in SAP
systems, data pertaining to a particular material is scattered across
the MARA (material type and basic statistics), MARC (manufacturing-
related details), MBEW (valuation data), and other tables. As a result,
many data engineering tasks such as entity matching cannot be
solved based on individual tables since the complete relational
context and structure must be considered.

3 INITIAL EVALUATION
In this section, we empirically examine the challenges that arise
when applying LLMs to data engineering on enterprise data.

Task. For our initial evaluation, we focus on column type annota-
tion (CTA), a well-established task whose goal is to annotate the
columns of a relational table with semantic types from a pre-defined
ontology such as DBPedia [10, 12, 14, 18, 31]. We choose CTA as
a first exemplary task for our analysis since it requires a semantic
understanding of the content of every column as well as its tabular
context, such as the values of other columns [27, 31]. This fine
granularity of the CTA task allows us to demonstrate many of the
challenges that arise on enterprise data.



user: Predict the column types of the following tables. Provide 
just the column types as a JSON list without any 
introduction or explanation.
Column types are: ["account type", "clearing date", …

user: STAS
MANDT,STLTY,STLNR,STLAL,STLKN,STASZ,DATUV,TECHV,AENNR,…
1,F,47294573,0,8,21,20210304,,394729478,,20210301,…
1,F,93618467,0,9,14,20170121,,141834612,,20170120,…
1,F,34188479,0,21,34,20191123,,560289473,,20191119,…

assist: ["client", "bom category", "bill of material", …

user: BSEG
MANDT,BUKRS,BELNR,GJAHR,BUZEI,BUZID,AUGDT,AUGCP,AUGBL,…
1,D054,5930568205,2013,5,H,20140503,20140501,9836283674,…
1,D054,5829473293,2021,7,H,20221123,20221119,3485949047,…
1,D037,3168347239,2012,43,L,20120913,20120831,7554950694,…

Figure 1: Example prompt for CTAwith instruction, one-shot
example, and table to annotate. The data are fictional.

Datasets. We experiment on two existing CTA datasets as well as
our novel EnterpriseTables corpus:

1) GitTablesCTA [8] is a subset of the GitTables corpus [9] anno-
tated with semantic types. For our experiments, we use 350
tables annotated with 122 semantic types from DBPedia.

2) SportsTables [17] consists of web tables describing various sport
events.We include this dataset for its high proportion of numeric
data and large number of semantic types. We use 500 randomly
selected tables annotated with 452 semantic types.

3) EnterpriseTables has 100 tables annotated with 5, 063 semantic
types derived from the SAP data dictionary, like client and
material category. To make the large number of semantic
types tractable, we include only a subset of the semantic types
in every prompt.

Models. We use GPT-3.5-Turbo and GPT-41 from OpenAI [5]. The
GPT models are known for their high performance, and comparing
GPT-3.5-Turbo to GPT-4 demonstrates the benefits of the different
generations. GPT-3.5-Turbo has a context window of 16, 385 tokens
and a cost of 0.5$ per 1M input tokens, whereas GPT-4 has a context
window of 8, 192 tokens and a cost of 30$ per 1M input tokens. In
the future, we plan to apply additional models, including recent
open source models.

Prompting. Our prompting strategy builds on best practices from
existing literature, which we had to adapt to the unique character-
istics of the enterprise tables. Figure 1 shows an example prompt
consisting of a short instruction, a list of all semantic types, one
randomly selected example, and the table to annotate. In our eval-
uation, we use a task formulation where the model annotates all
columns of the given table, which is a setting chosen also by other
papers [14, 31]. However, due to the LLMs’ limited context win-
dows, we have to limit each table to three randomly selected rows.
For similar reasons, we serialize the tables in CSV format, which
requires fewer formatting tokens than other serialization schemes
like Markdown and JSON [26, 28]. Finally, we instruct the model to
generate the column types as a JSON-formatted list.

1We use gpt-3.5-turbo-1106 and gpt-4-0613.

Table 2: Enterprise vs. web tables. The table shows support-
weighted F1 scores for CTA with and without column names.
The results on enterprise data are substantially worse than
on existing benchmarks.

EnterpriseTabs GitTablesCTA SportsTables
column names w/out with w/out with w/out with

GPT-3.5-Turbo 0.02 0.08 0.39 0.82 0.32 0.62
GPT-4 0.03 0.17 0.55 0.98 0.58 0.90

Table 3: Non-numeric (abc) vs. numeric (123) data. The ta-
ble shows support-weighted F1 scores for CTA with column
names. Results on numeric data are on par with or worse
than on non-numeric data across all models and datasets.

EnterpriseTabs GitTablesCTA SportsTables
data types abc 123 abc 123 abc 123

GPT-3.5-Turbo 0.09 0.05 0.84 0.80 0.76 0.60
GPT-4 0.18 0.15 0.98 0.98 0.91 0.90

3.1 Exp. 1: Overall Performance
In our first experiment, we compare the performance for CTA on
our new EnterpriseTables corpus with the performance on GitTa-
blesCTA and SportsTables.We perform each experiment twice, with
and without including the table and column names (i.e., the table
schema). While existing evaluations typically leave out the column
names since the semantic types are directly derived from them and
the task would thus become trivial, for EnterpriseTables, the CTA
task is much harder. Therefore, we want to investigate how much
the additional information helps.

Results. Table 2 shows the results of this experiment. We make
the following key observations: (1) LLMs have severe problems
with CTA on enterprise data, leading to substantially worse results
compared to the web resources GitTablesCTA and SportsTables.
Especially in the experiments without column names, the results
on enterprise data are particularly poor (F1 scores of only 0.02 and
0.03), indicating that the enterprise data on its own contains few
helpful signals. (2) Adding column names to the prompt improves
the results on the enterprise data, but only up to 0.17 using GPT-4,
which is still much lower than for web tables. The remaining per-
formance gap could potentially be attributed to the cryptic schema,
extremely wide and sparse tables, and the complex data types de-
scribed in Section 2. (3) Finally, we observe that GPT-4 performs
substantially better than GPT-3.5-Turbo across all datasets but still
cannot handle enterprise data well.

3.2 Exp. 2: Impact of Numerical Data
LLMs are known to often perform better on textual data than on
numerical data [6, 17]. To analyze this effect on enterprise data, we
examine the performance for numeric and non-numeric columns
in our EnterpriseTables corpus.
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Figure 2: Varying numbers of columns (top) and sparsities
(bottom). The plots show support-weighted F1 scores for CTA
withGPT-3.5-Turbo on EnterpriseTables promptedwith ××× and
without ∗∗∗ column names (zoomed in on the right). Increas-
ing numbers of columns lead to worse results. Increased
sparsity leads to worse results if no column names are given.

Results. Table 3 shows that, as expected, we see a higher per-
formance on non-numeric data. By contrast, using GPT-4 on the
GitTablesCTA and SportsTables datasets, we do not observe perfor-
mance differences between the data types. The low performance on
the EnterpriseTables dataset even with GPT-4 (F1 scores of 0.18 for
non-numeric and 0.15 for numeric data) indicates that numeric data
in enterprise systems is even harder to understand than in web ta-
bles. Furthermore, the low accuracy for non-numeric columns could
stem from the fact that the enterprise tables often store identifiers
like 0014056 as type NVARCHAR, as we explained in Section 2.

3.3 Exp. 3: Table Width and Sparsity
To investigate the performance gap between LLMs applied to web
tables compared to enterprise data, we incrementally adapt the
enterprise tables to resemble the characteristics of web tables more
closely. As two of the main differences are table width and sparsity,
we vary the number of columns per table by randomly sampling
subsets of columns (Figure 2 top), and vary the sparsity by incre-
mentally sparsifying the columns (Figure 2 bottom).

Results. As we can see in Figure 2, increasing numbers of columns
lead to substantially worse results, indicating that the large table
widths in enterprise data are indeed a major problem for LLMs.
While one solution is splitting up large tables into multiple smaller
column sets, important context information may then be lost. Re-
garding sparsity, we observe worse results with increased sparsity
if no column names are provided, whereas with column names,
increased sparsity does not change the results much. This indicates
that LLMs primarily rely on the column headers to predict the
semantic types and do not take the cell values into account.

4 THE ROAD AHEAD
With this paper, we make a first attempt to illustrate the challenges
of applying LLMs to real-world enterprise data. As shown in our
initial study, current state-of-the-art LLMs do not work out-of-the-
box on enterprise data as they do on web tables due to the unique
characteristics of the enterprise data. In the following, we discuss
potential directions to close this gap.

Improving LLMs for CTA on enterprise data. To improve the
performance of LLMs when predicting semantic column types
on enterprise data, future work could look into prompt engineer-
ing [14] and fine-tuning [7] with the characteristics of the enterprise
data in mind. Moreover, helpful context information included in
the prompt, such as example values for each column type, could
further support the model. Finally, models such as Pythagoras [16]
that are specifically designed to handle, for example, numeric data,
are a promising research direction.

Tackling other data engineering tasks. Apart from column type
annotation, there are many more data engineering tasks to auto-
mate [11, 21]. Many of these tasks come with additional challenges
on real-world enterprise data. For example, entity matching is de-
fined in the literature as identifying the rows in two tables that
refer to the same real-world entity [24]. However, in the context
of enterprise data, the data describing a single entity (business ob-
ject) is usually scattered across multiple tables. Hence, to decide
whether two business objects match, a model must incorporate the
values stored in multiple connected tables instead of just one table.
This makes entity matching and other tasks like error detection
and missing value imputation tricky to address using LLMs since
such relationships across multiple tables are hard to capture using
natural language prompts and limited context windows.

Synthetic enterprise data. As mentioned, enterprise data is typi-
cally highly confidential and, thus, cannot be made available to the
public. One way to overcome this issue could be to adapt existing
table corpora to more closely resemble the characteristics of enter-
prise data laid out in Section 2, for example by obfuscating column
names or by extending tables with additional rows and columns.

The need for Tabular Foundation Models. Finally, we advo-
cate the development of new tabular foundation models designed
with the characteristics of enterprise data in mind. For example,
to address the complex structure of enterprise data, a promising
way forward is to combine LLMs with graph neural networks that
can take the complete relational structure into account [29]. Such
models could incorporate the values stored in different tables to
decide whether two entities refer to the same real-world concept.
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