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ABSTRACT
The popularity of data science as a discipline and its importance in
the emerging economy dictate that machine learning be practiced as
a basic tool. This also means that the current practice of workforce
training and using machine learning tools with low level statisti-
cal and algorithmic details is a barrier that needs to be addressed.
Similar to data management languages such as SQL, machine learn-
ing needs to be taught, practiced and used at a conceptual level to
help make it a staple tool for learners and practitioners alike. In
this paper, we introduce a new declarative machine learning query
language, called MQL, for naive users. We discuss its merits and
possible ways of implementing it in a traditional relational database
system.
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1 INTRODUCTION
In this paper, we ask the question, how difficult is it to design a
declarative query language for machine learning (ML) analysis by
pointing out how difficult and arcane it is to write code segments on
popular ML platforms such as SciKit-Learn, Pytorch, R, or Tensor-
Flow by non ML experts. By declarative, we mean that if a language
for machine learning that is as simple and as powerful as SQL can
be designed, can it perform the most complex analysis a modern
machine learning algorithm can?

The current state of ML is not accessible to most potential users
of data science [8], and we concur with many researchers who be-
lieve that a significant barrier exists toward exploiting ML without
a declarative platform [18]. In the absence of a language similar to
SQL, it is extremely difficult and unlikely for naive users to compre-
hend, let alone devise, a simple regression analysis code fragment
easily executable on amachine. For example, the process to perform-
ing a clustering analysis [21] (or classification [17]) on the Boston
housing dataset on Kaggle [19] is by no means an easy task, even
for a good computational scientist without adequate proficiency in
regression analysis. It requires exploratory data analysis, principal
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component analysis, and more to get a sense of the data and to
make a decision about the number of clusters that are appropriate,
most of which can also be performed by a smart algorithm. Then
there is the issue of accuracy, and the selection of the best model
for the analysis [1, 9, 28].

The natural question then is: are all these details necessary, at
least most of the time? Could these analysis algorithms be chosen by
a query processor from an abstract request for prediction, clustering,
or classification based on the properties of the data sets the same
way relational database engines select join algorithms, aggregate
function algorithms, or procedures for OLAP functions? Could
optimization be possible and decided by query processors in ways
analogous to SQL engines?

While we do not currently have all the answers, we believe
that the starting point should be the development of a suitable
declarative query language for ML that will be simple in spirit and
expressive enough to be able to support most, if not all, ML analysis
needs on tabular data. To that end, our goal in this paper is to in-
troduce an ML query language, called MQL, capable of supporting
three basic classes of ML tasks - prediction, classification, and clus-
tering. We organize the language constructs into three tiers – data
preparation (or wrangling), model construction, and ML analysis.
These language constructs have distinct semantics and no inherent
inter-dependencies. In the sections to follow, we first present MQL’s
syntax and semantics and then discuss its merit over contemporary
declarative languages before we conclude.

2 RELATEDWORK
The main purpose of a declarative language is to reduce the human-
machine interfacing barriers by making machine instructions sim-
ple and easy to conceptualize. An all time great example of declar-
ative languages is SQL. While this definition of declarativity is
subject to interpretation, the essence should remain. From this
standpoint, a simple language for ML has to be highly abstract and
should support the so called naive users’ use of ML tasks, having
only conceptual and rudimentary knowledge of this technology
while the machines assume the bulk of the technical underpinnings
and efficiency concerns [30]. Given that ML tasks are complex,
involved, and require subject expertise, meeting such levels of ab-
straction requirements in a human-machine interfacing language,
or query language, is undoubtedly a tall order.

Nonetheless, several attempts were made to simplify the use of
ML technologies for the masses. Among them, AutoML [23] may
be the most prominent effort of all. While challenges remain [5],
the emergence of large language models appears to address many
of these challenges to some extent [29] toward democratizing ML.
AutoML, or Automated Machine Learning, is a set of techniques
aimed at automating the process of building ML models. The basic
idea behind AutoML is to make ML more accessible to users with
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limited ML expertise by automating some of the complex and time-
consuming tasks, such as data preprocessing, feature engineering,
model selection, and hyperparameter optimization, involved in
model development. By automating these tasks, AutoML aims to
reduce the amount of manual effort required to build and deploy
ML models, making it easier for non-experts to leverage the power
of ML in their applications.

Variants of the ideas behind AutoML are also being investigated.
Among them, MLBase [11] attempted to help automate the pipeline
by proposing a declarative language and an optimizer to lend a
hand in balancing the efficiency aspects of declarativity that usually
delegate this responsibility to the system. Despite the design goal,
the language they support appears to have procedural features and
is not abstract enough compared to languages such as SQL to have
a wider appeal.

WOLFE [27] was an early natural language interpreter ML front-
end development effort. In approaches such asWOLFE, query under-
standing and mapping the intent into some form of executable code
is employed, which is written in TensorFlow. A similar translational
approach is used in languages such as sql4ml [16], ML2SQL/MLearn
[24, 25], P6 [14], MLog [15], Datalog [32], and Dyna [31]. The pop-
ularity of translational implementation of declarative languages
into ML frameworks such as TensorFlow, PyTorch, or SciKit Learn
is not by accident. Rather, it is convenience and a desire to leverage
community investments in powerful and large bodies of algorithms
for ML developed over a few decades. Until more powerful end-
to-end ML systems are developed and mature, such as SystemML
[4], SystemDS [3], EndToEndML [20], Merlion [2], VeML [13], and
Relax [12], we believe these translation-based systems will continue
to play a major role in democratizing ML.

3 MACHINE LEARNING QUERY LANGUAGE
With the intent to stay close to an SQL-like language, we propose a
syntax similar to SQL for MQL and design lower level operational
procedures to assign semantics to the declarative statements of
MQL. MQL retains part of the SQL flavor to leverage the community
knowledge of SQL and reduce cognitive overload.

3.1 Syntax of MQL
MQL supports two basic statements – GENERATE for querying
tables and CONSTRUCT for creating an ML model. While the GEN-
ERATE statement is able to exploit an existing model, it can also
operate without one by generating its own model.

3.1.1 The GENERATE Statement. TheGENERATE statement stands
at the level of SQL’s SELECT statement and is the main workhorse
of MQL. It operates on tabular data to make predictions, categorize
objects, and group sets of objects into bins. It has five basic clauses –
an ML class selection (one of PREDICTION, CLASSIFICATION, and
CLUSTER), optional object labeling, feature selection, a data set, a
filter condition over the data set, and an input table of unknown
cases (the test set).

GENERATE [DISPLAY OF]
PREDICTION v [OVER s] |
CLASSIFICATION INTO L1, L2, ..., Lp [OVER s] |
CLUSTER OF k
[USING MODEL ModelName | ALGORITHM AlgorithmName]

[WITH MODEL ACCURACY P]
[LABEL B1, B2, ..., Bm]
[FEATURES A1, A2, ..., An
FROM r1, r2, ..., rq
WHERE c]

In the above statement, 𝑟𝑙 is a table over the scheme 𝑅𝑙 , 𝑐 is
a Boolean condition, 𝐴𝑖 ∈ ∪𝑙𝑅𝑙 , 𝑠 is a table over the scheme
∪𝑗𝐵 𝑗

⋃∪𝑖𝐴𝑖 , k is an integer, and 𝑣 ∈ ∪𝑙𝑅𝑙 , 𝐿𝑘 ∈ 𝑑𝑜𝑚(𝑋 )1. In
this statement and in all the MQL statements, the vertical bar (|)
means exclusive OR, and the square bracket ([]) means optional.

𝑣 in the PREDICTION clause is the target variable, and 𝐴𝑖s are
the features. The optional LABEL clause identifies attributes 𝐵 𝑗 as
the object identifiers for all three ML tasks. The CLASSIFICATION
clause classifies each object ∪𝑗𝐵 𝑗 into one of 𝐿𝑘 categories. The 𝑘
in CLUSTER clause is an integer expression that can include SQL
aggregate functions over the tables 𝑟𝑙 . Finally, the optional USING
clause is meant to either use an existing model (MODEL option)
generated using the CONSTRUCT clause (discussed next), or a
specific ML algorithm (ALGORITHM option) for the generation of
the model. As in SQL, WHERE is an optional clause, but unlike SQL,
FROM is required. The OVER clause supplies the unknown test
dataset over the scheme 𝐴𝑖 ∪ 𝐵 𝑗 . The ACCURACY option accepts a
threshold within the interval (0,1).

3.1.2 CONSTRUCT Statement. To create an explicit model, MQL
uses the CONSTRUCT statement below. It stands at a level similar
to SQL’s CREATE TABLE statement, but is at the data level and
more functional. It is able to generate a default model for prediction,
classification, or clustering, optionally using a specific algorithm
for supervised or unsupervised learning. The TRAIN ON parameter
N (similarly TEST ON) is an integer value less than the cardinality
of the table 𝑟 , and can be expressed as an expression, possibly using
SQL aggregate functions. While the expression for 𝑀 should be
such that 𝑁 +𝑀 ≤ |𝑟 | (where |𝑟 | = |𝑟1 | × |𝑟2 | × . . .× |𝑟𝑛 |), MQL will
not object if the condition 𝑁 +𝑀 ≤ |𝑟 | is not met and will assign
the eventual semantics entailed by these two expressions. In this
statement, 𝐴𝑖 is the feature vector over which the model is created.

CONSTRUCT ModelName [AS SUPERVISED | UNSUPERVISED]
FOR PREDICTION v |
CLASSIFICATION INTO L1, L2, ..., Lp |
CLUSTER OF k
[USING AlgorithmName]
[WITH MODEL ACCURACY P]
TRAIN ON N TEST ON M
FEATURES A1, A2, ..., An
FROM r1, r2, ..., rn
WHERE c

3.1.3 The INSPECT Statement. The INSPECT statement is similar
to the UPDATE statement of SQL and helps editing or wrangling
the tables. For attributes 𝐴𝑖 , it allows the values in these columns
to be categorized, missing values predicted, convert categories to
continuous values and eliminate duplicate rows. This statement
affords MQL the power to manipulate a table to make it suitable
for a potential learning task fully autonomously by a smart pre-
processing engine. INSPECT returns a table with a scheme of a
relation reflective of the resulting table in the FROM clause.

1𝑑𝑜𝑚 (𝑋 ) is the set of elements in the domain of the column 𝑋 , and 𝑋 ∈ ∪𝑖𝐴𝑖 .



INSPECT A1 [CATEGORIZE INTO L1, L2, ..., Lx |
IMPUTE | NUMERIZE AS E | DEDUPLICATE],
A2 [CATEGORIZE INTO L1, L2, ..., Lx |
IMPUTE | NUMERIZE AS E | DEDUPLICATE], ...,
An [CATEGORIZE INTO L1, L2, ..., Lx |
IMPUTE | NUMERIZE AS E | DEDUPLICATE]
FROM r1, r2, ..., rn
WHERE c

3.2 Semantics of MQL
The semantics we assign to each of these statements are system
and implementation specific. By that, we mean that each system
implementing these statements will play a major role in their mean-
ing, efficiency, accuracy, and performance. For example, if they
are implemented in TensorFlow as opposed to PyTorch or R, they
will demonstrate different characteristics, i.e., the predictions made
by the underlying TensorFlow algorithms could be different from
the Pytorch or SciKit-Learn based algorithms, and the prediction
accuracies may vary. We consider this aspect of MQL somewhat
similar to SQL’s optimization strategies. The only difference is that
in the case of MQL, it is more about the quality of the predictions
or the semantic interpretations of the data. In this paper, we do not
address these issues and only focus on the generic semantics we
expect from each of these statements.

For illustrative purposes, we use Kaggle’s Boston housing market
dataset [19] as our example. This data has 506 observations with
13 continuous and 1 binary attribute stored as the file bostonHomes
(the full list of features and their interpretations can be found in
[19]). Many interesting analyses of this dataset by a large number
of researchers point to how a smart query processor and optimizer
could exploit them to develop processing strategies to meet user
needs. Our goal, however, is not to delve into processing strategies
or optimization opportunities but to offer these passing comments
for interested readers. Instead, we refer readers to [10] for the
Python code segment that implements a linear regression model
assuming a Pandas DataFrame “df" with columnsMEDV, CRIM, ZN,
NOX, DIS, TAX, and PTRATIO. It splits the data into training and
testing sets, standardizes the features, builds a linear regression
model using SciKit-Learn, trains the model on the training set,
evaluates it on the test set, and makes predictions. The number
of epochs and other hyperparameters can be adjusted by a query
processor for the dataset, as needed, to meet any user specified
performance threshold. Similar code segments can be generated to
implement the CONSTRUCT and INSPECT statements.

3.2.1 Query Processing. Compared to SQL databases, ML databases
and query processing are likely more nuanced, complex, and re-
quire more user involvement in library and algorithm selection, or
code customization. Query processing for MQL currently needs
additional instructions beyond the Python scripts. A file handler
has been implemented to bring data to the MQL store and link with
the query processor. The directory path for the Boston housing
data in CSV format can be included in the Python code segment or
copied into the directory where the code is running.

The MQL query below for the prediction of home values using
the Boston housing data can be submitted in command line mode
in the MQL engine for execution. In this query, the median home

value is being predicted for homes in the file homesNew given a
subset of features in the set {CRIM, ZN, NOX, DIS, TAX, PTRATIO}.
In the plot, the HomeNo in the file homesNew is used as label.

GENERATE DISPLAY OF
PREDICTION MEDV
OVER homesNew
LABEL HomeNo
FEATURES CRIM, ZN, NOX, DIS, TAX, PTRATIO
FROM bostonHomes

3.2.2 Results. We assign translational semantics to the query in Fig
?? by mapping it to the SciKit-Learn program for execution. In this
program, we first extract the features (’CRIM’, ’ZN’, ’NOX’, ’DIS’,
’TAX’, ’PTRATIO’) and the target (’MEDV’) from the DataFrame.We
then split the data into training and testing sets using train_test_split.
Next, we create a Linear Regression model and train it on the
training data using fit. We then make predictions on the test set
using predict, and evaluate the model using mean squared error
(mean_squared_error). On execution over the slightly sparse dataset
in Fig 1, it produced the plot in Fig 2(b) in which we assumed zero
for missing values as shown in Fig 2(a). If imputed values are used
for missing values as shown in the code, predictions will be slightly
different. The predicted versus actual plot is shown in Fig 2(c).

HomeNo CRIM ZN NOX DIS TAX PTRATIO
1 0.00632 18 0.538 4.09 296 15.3
2 0.50031 7 - 3.20 107 3.5
3 - 12 - 2.78 148 11.6
4 0.02731 0 0.469 - 242 -

Figure 1: Test data input table homesNew.

4 IMPLEMENTATION STRATEGY
Wehave implemented theMQL statements using SciKit-Learn using
Python over CSV datasets. Currently, we only support one table in
CSV format in the FROM clause and no WHERE clause condition
is allowed2. Note that these restrictions are not a limitation of the
language and does not affect its expressive power.

A more serious implementation in PostgreSQL using User De-
fined Functions (UDFs) written in SQL and PL/Python [22, 26] is
underway. Once completed, we should be able to compare per-
formance of the current file based and the PostgreSQL based ap-
proaches to implementation and comment more on how these
choices influence various ML query processing parameters in ways
similar to P2D [7] that also takes a similar translational approach.
Opportunities also exist to decide system defaults for DISPLAY OF,
data wrangling for test data (e.g., missing value imputation), etc.

4.1 Discussion
In our view, there are not too many declarative ML languages that
stand at the same level as MQL. By that we mean, a language that
does not require users to express analysis needs using a language
more akin to procedural codes. It should be readily noticed that
the languages such as Dyna, ML2SQL, sql4ml, and P6 [14] though
2This means that if data has to come frommultiple tables, users will need to pre-process
and create a single table.



(a) homesNew assumed table. (b) Bar plot. (c) Predicted v actual plot.

Figure 2: Predicted home median values.

possibly are more powerful and customizable, they are closer to
procedural languages such as Python or C++, and thus give an
appearance and flavor of imperative programming. The CREATE
FUNCTION or the CREATE OPERATOR statements and the elabo-
rate codes in Python or C++ is a significant barrier. In contrast, we
hide all procedurality and offer a flavor of SQL like semantics.

We agree with Gleeson [6] and believe that declarativity should
be SQL like, even for ML. Gleeson, however, encoded several ML
tasks directly in PostgreSQL using ML features supported in it. For
example, regression has been coded as follows where the objective
is to “learn” the parameters𝑚 and 𝑐 of a linear equation of the form
𝑦 =𝑚𝑥 + 𝑐 from the training data.

WITH regression AS
(SELECT regr_slope(y, x) AS gradient,

regr_intercept(y, x) AS intercept
FROM linear_regression
WHERE y IS NOT NULL)

SELECT x, (x * gradient) + intercept
AS prediction

FROM linear_regression CROSS JOIN
regression

WHERE y IS NULL;

In this code segment, the regr_slope() and regr_intercept() func-
tions are used to estimate the gradient and intercept terms, respec-
tivel corresponding to the equation 𝑦 = 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 × 𝑥 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 .
In MQL, we will express the same functionality as follows, which
we are able to execute on any database engine using a front-end.

GENERATE DISPLAY OF
PREDICTION y
OVER unknown_xs
FEATURES x, gradient, intercept
FROM linear_regression

In the above query, the table unknown_xs contains the values 𝑥
for which 𝑦 needs to be predicted. The DISPLAY OF option plots a
graph to show the 𝑦 values against each 𝑥 in unknown_xs. Without
the DISPLAY OF option, MQL will just compute a table with the
columns 𝑥 and 𝑦. The difference obviously is, in MQL, users think
in a more abstract manner and at a very conceptual level.

4.2 Future Improvements
Our current implementation has a few drawbacks that we plan
to address in MQL’s future editions. The first drawback is a de-
sign choice for the first edition of MQL. In this edition, we did
not include an option to generate visualization primitives for the

CONSTRUCT and INSPECT statements, only GENERATE supports
data visualization. But, it is necessary to allow visualization of vari-
ous relationships during model building, feature selection and data
wrangling. We are in the process of designing an extended set of
suitable features to support data visualization.

The second limitation of MQL is related to the quality of anal-
ysis and query processing performance. There are numerous ML
frameworks and a large number of ML algorithms that are suitable
for applications on a case by case basis. Therefore, it is imperative
that an MQL query optimizer be developed to identify candidate
algorithms most relevant to a specific ML task, data set and ana-
lytic options. In absence of such an optimizer, MQL is in risk to
compromise quality of analysis or performance, or both. We hope
to address this limitation soon.

5 CONCLUSION
The MQL language we have introduced has several basic strengths
and advantages over other similar languages. First, its basic struc-
ture is simple and easy to understand. The algorithmic and proce-
dural separation of MQL and its declarative semantics also offers
the opportunity for selecting implementation strategies, optimiza-
tion and system level customization not offered by most contem-
porary declarative ML languages (the few that we are aware of).
Better opportunities for using large language models now emerge
to map natural language queries into MQL in ways similar to SQL
for a more streamlined execution, instead of mapping to archaic
Python codes . While we are contemplating a PostgreSQL imple-
mentation of MQL and explore optimization strategies, its current
implementation on a file based store serves as a proof of con-
cept and demonstrates its merits. While an extended version of
this article is already available [10], detailed description of MQL’s
implementation will be published elsewhere. A public and open
source GitHub repository for this project is also being maintained
at https://github.com/hmjamil/mql with the goal of MQL’s shared
community development.
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