
Humboldt: Metadata-Driven Extensible Data Discovery
Alex Bäuerle*

AxiomBio
Çağatay Demiralp*

Amazon & MIT
Michael Stonebraker

MIT

ABSTRACT
Data discovery is crucial for data management and analysis and
can benefit from better utilization of metadata. For example, users
may want to search data using queries like “find the tables created
by Alex and endorsed by Mike that contain sales numbers.” They
may also want to see how the data they view relates to other data,
its lineage, or the quality and compliance of its upstream datasets,
all metadata. Yet, effectively surfacing metadata through interactive
user interfaces (UIs) to augment data discovery poses challenges.
Constantly revamping UIs with each update to metadata sources (or
providers) consumes significant development resources and lacks
scalability and extensibility.

In response, we introduce Humboldt, a new framework enabling
interactive data systems to effectively leverage metadata for data
discovery and rapidly evolve their UIs to support metadata changes.
Humboldt decouples metadata sources from the implementation
of data discovery UIs that support search and dataset visualization
using metadata fields. It automatically generates interactive data
discovery interfaces from declarative specifications, avoiding costly
metadata-specific (re)implementations.

To evaluate Humboldt, we implement it in a commercial SaaS
application for interactive business data analysis. We demonstrate its
expressiveness by automatically generating a new feature-rich data
discovery interface in the application using a few lines of Humboldt
specification. This new interface offers several types of discovery
views based on the characteristics of the available data and metadata.
It also supports composable query-based search and automatically
enables queries such as “type: table owned by: ‘Alex’ badged: en-
dorsed badged by: ‘Mike’ & ‘sales”’ where query parameters are
compiled from the specification. We also evaluate how well the
discovery interface benefits end users through a preliminary study
conducted with sales engineers. Results show that the Humboldt-
generated interface assists users in effectively utilizing metadata for
discovery and search, with varying ease in using its components.
The results also suggest organizations and users have varying data
discovery needs and preferences, validating Humboldt’s design goals
of expressivity, composability, and configurability.

VLDB Workshop Reference Format:
Alex Bäuerle, Çağatay Demiralp, and Michael Stonebraker. Humboldt:
Metadata-Driven Extensible Data Discovery. VLDB 2024 Workshop:
Tabular Data Analysis Workshop (TaDA).

*Work done at Sigma Computing.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

"airline" & view count: >200

UI Generator

{
"type": "usage",
"name": "view count",
"description": "Data wit
"representation": "TILES
"input": [{ "type": "USE
"endpoint": "api/view_co
"visible": { "discovery"

}

Specification

Metadata
Providers

Meta
Meta

Meta

Figure 1: The Humboldt1 framework enables interactive data
systems to effectively leverage metadata for data discovery and
rapidly evolve their user interfaces through declarative specifi-
cation to support metadata changes.

1 INTRODUCTION
The development of easy-to-use data analysis tools [14, 20, 31] and
the low cost of storing data in public cloud [1] provided broad au-
diences with the possibility of accessing and making use of large
collections of data without writing code or relying on data analysts.
On the other hand, the extended usability also led to data stores in
enterprises with a much less modeled state and a rapid expansion of
the data landscape with the proliferation of derived artifacts (e.g.,
tables, visualizations, dashboards) [30]. As a result, finding the right
data for the task (data discovery) has become even more challenging.
Metadata such as data ownership, usage, certification, annotations,
dictionaries, and relationships (primary-foreign key, lineage, down-
stream data flow, semantic similarity, etc.) can play an essential role
in addressing the challenge by providing business and semantic con-
text to constrain the search space [13]. For example, metadata can
enable an employee who recently joined the marketing department
to find the marketing attribution dashboard endorsed by the manager
and frequently viewed by the team members. The employee can
further check the lineage of the data underlying the found dashboard
to get a quick sense of what tables to trust.

Some commercial data analysis tools (e.g., [28, 33]) offer APIs
to query content using metadata. However, these services are inac-
cessible to users who don’t code and, crucially, separate metadata
from the interactive data analysis context. Discovery user interfaces
(UIs) should surface metadata effectively to be useful for broader
audiences. For example, the new employee above should be able to
filter the available dashboards based on their endorsement tags and
endorsers, e.g., by selecting the condition from a dropdown menu or
running a keyword search. Yet, existing interactive data systems have
limited support for metadata-driven data discovery. The UIs for data
discovery using metadata in these systems are typically implemented
using hardcoded views and interactions, where any update to the
metadata sources requires expensive and error-prone code changes.
Therefore, UIs that enable interaction with new metadata and derived

1See a demo video of Humboldt at https://tinyurl.com/4csh4axj

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://tinyurl.com/4csh4axj

representations are often implemented long after metadata becomes
available. Even then, they are difficult to customize and extend to
support the varying data discovery needs of users and domains.

In response, we introduce Humboldt (Figure 1) to dynamically
generate data discovery UIs from declarative specifications, enabling
easy integration and use of different types of metadata in interactive
data systems without going through costly software upgrade cycles.
In Humboldt, enabling new metadata for data discovery and search
is just a matter of adding a few lines of specification instead of
changing the UI implementation. Consider an admin who wants to
make the relationship metadata based on a machine learning model
on table similarity available for data discovery in the UI. Adding
the model as a new metadata provider2 in Humboldt ’s specification
would suffice to enable such support with the relevant views and
visualizations generated automatically.

To find the right data, users need contextual views (e.g., "which
dashboards are my teammates working on?"), exploration tools (e.g.,
"show me data that is joinable to what I’m looking at"), and filters
(e.g., "show me only analyses from a specific user"). Humboldt ’s
specification supports these tasks through three main data discovery
features: overviews, exploration, and search. From the specification,
we generate various views that serve as entry points to data analysis.
When interacting with data, Humboldt can surface related data arti-
facts, facilitating further exploration. Humboldt also builds a query
language for complex, metadata-based search and filtering. Serving
as a layer of abstraction on top of metadata providers, Humboldt
makes it easy to add, change, or remove metadata providers without
changing any UI code.

Humboldt is designed as an interface between existing metadata
providers and a data discovery UI. Adding new metadata providers
or changing their behavior does not require changes in the UI code.
At the same time, Humboldt ’s representation of metadata providers
enables an automatic generation of UI elements for data discovery.
In summary, our contributions are as follows :

• We introduce Humboldt, a specification-based system frame-
work for generating a data discovery UI from different meta-
data providers. We implement this new framework in Sigma
Workbook [14], a commercial SaaS application for business data
analysis.

• We demonstrate the expressivity of the Humboldt framework
by automatically generating an interactive UI in Sigma Work-
book, supporting multiple search paradigms, different types of
views (Figure 6), composable queries, and ranking algorithms
for metadata-driven data discovery.

• We evaluate the new data discovery UI in Sigma Workbook
generated by Humboldt in a user study with six users at Sigma
Computing. The generated UI effectively integrates metadata
for improved data discovery and search. Different teams and
users have different data discovery needs and preferences, further
motivating the Humboldt design. Humboldt enables data systems
to tailor their data discovery UIs to users’ needs and preferences.

2Metadata provider is a metadata source, typically an API endpoint.

2 RELATED WORK
Our work relates to two categories of prior data discovery research.
Research in the first category concerns techniques for automatically
extracting and computing the properties of and connections between
datasets (e.g., descriptive, structural, or provenance metadata) for
augmenting data discovery. The second category of earlier research
focuses on interactive interfaces for data discovery. We summarize
both lines of related work below.

Data Discovery Techniques. Earlier work computes how tables in a
database relate to each other using various similarity measures. Most
similarity computations operate on descriptors or signatures of table
columns (e.g., MinHash sketches, TF-IDF, headers, embeddings,
sample values, etc.). These descriptors and signatures determine
the type of relationship computed. Types of similarities captured
by earlier work include, e.g., value overlap [5, 6], distribution [6],
examples [15, 27], and semantic similarities [7, 10, 12, 17]. Others
use table-wide measures such as schema [11] and entity comple-
ment [11, 35] to identify joinable and unionable tables for a given
query table. Earlier research also uses column similarity to build
lifted representations such as graphs to support efficient dataset
queries [6, 17] and navigation [21].

The similarity or relatedness of one dataset to another is often task
and domain-dependent. Prior work such as D3L [3] and Voyager [4]
combines ensembles of similarity measures for data discovery. This
ensemble approach improves over, for example, Aurum [6] on table
union search.

Modeling and computing relevance are necessary for data dis-
covery but orthogonal to Humboldt. The earlier work exemplified
above focuses on approaches for extracting and computing relevance
(a form of metadata) for data discovery. It leaves how to surface it
to users largely unexplored, which Humboldt aims to address. We
designed Humboldt to facilitate extensible and evolvable data discov-
ery UIs in interactive systems that can easily integrate and compose
different types of metadata for augmenting dataset search [2].

Data Discovery Interfaces. Data discovery is a form of search [9],
and there is extensive literature on improving the user experience
for search [16]. Exploratory search [18, 34] is essential for data
discovery where users may not know what they are looking for. Prior
work uses faceted browsers [36] and dynamic queries [29] to enable
users incrementally to build partial specifications of search queries
through direct manipulation.

Research on the Semantic Web has explored ways to create user-
friendly interfaces for surfacing data specified in Resource Descrip-
tion Format (RDF) [25, 26]. While our approach also generates UI
from a declarative specification, it focuses on integrating metadata
sources for improving data discovery interfaces in the interactive
enterprise data systems.

Recent work introduces data discovery systems focusing on UI-
based visual interaction, bringing the two lines of prior research
above closer together. Kyrix-J [32] automatically generates visual
transitions (jumps) between prespecified multiscale visualizations
of database tables, where a connection provider supplies the connec-
tions (similarities) between tables. Auctus [5] surfaces data profiles
and relationships in an interface similar to web search interfaces for a
user-friendly data discovery experience. With Ronin [23], users can

123

Artifacts by view
count.

View Count

ABC

Categorized view of
all badged data.

Badge Category

Artifacts that use
a specific table.

Table Usage
Artifacts are marked
as endorsed.

Endorsed
Artifacts owned
by a specific team.

Team
Num. views by
num. references.

Usage

ABC

Data artifacts of a
specific type.

Type

Data artifacts with
a specific badge.

Badged
Artifacts that have
been deleted.

Trashed
Data artifacts owned
by a specific user.

Owned By
Artifacts shared
with the user.

Shared

Tables that are
joinable.

Joinable
A user's favorite
artifacts.

Favorites
Recommended
artifacts.

Recommended
Recently used
artifacts.

Recent Data

Input
User
Badge
Team
Table
Category
Number

ABC

123

View
Tiles
List

ABC

Hierarchy
Graph
Category
Embedding

Figure 2: Examples of Humboldt metadata providers. Views generated for a metadata provider in the data discovery UI depend on
the provider’s specification, which may describe various aspects of the provided metadata, such as its source, data format, visual
representation, visibility, field weights, and ranking.

start from a search query and explore related data in a hierarchical
organization.

However, earlier work on search interfaces and interactive data
discovery systems provides limited means to configure and cus-
tomize data discovery UIs, typically hardcoding the data search
support based on descriptive, structural, or provenance metadata. In
contrast, Humboldt enables data discovery that is adaptive to end-
user needs and different considerations of what is relevant, allowing
their quick, composable integration in the UI.

3 FRAMEWORK DESIGN
In the following, we describe the design process of Humboldt. Since
two of us worked at Sigma Computing, a business intelligence (BI)
company, we anchored our need-finding efforts around easy-to-use
(or self-service) business data analysis tools, a large class of inter-
active data systems with significant practical impact. To inform our
framework, we first conducted formative interviews to assess the
needs of users. Subsequently, we derived design goals for a data
discovery framework based on these insights.

3.1 Formative Interviews
To understand current BI tools’ limitations concerning data dis-
covery, we conducted seven semi-structured interviews at Sigma
Computing. We recruited participants through internal communica-
tion channels such as email and Slack. Our participants worked in
different roles, e.g., design, sales, and engineering. While some of
our participants reflected more on their own experience with data
discovery, many relayed customer feedback and, as such, revealed
day-to-day problems with discovering relevant data in the field. In-
terviews were conducted via video calls and lasted for 30 minutes.
We first asked our interviewees some general questions about their
data discovery needs. Then, we inquired about the pain points they
experienced when searching for data to answer their questions. Fi-
nally, we gave participants time to elaborate on potential solutions to
their problems. From these interviews, we identified the following
general themes.

The need for data discovery. The advent of modern interactive
direct manipulation-based (i.e., no-code) BI tools made data anal-
ysis available for many business users who needed programming
knowledge. However, the success of the analysis still depends on
finding the right data. This is especially important when users have
a large number of tables in their data stores, which can be “up to
millions.” (P3)

Often, users’ first experience with a data analysis tool determines
whether they will adopt it in their workflow as “onboarding weeks
makes users love [or hate] a product.” (P2) However, currently, a
large portion of the initial onboarding process for BI tools is spent
on searching for the right data to use so that the initial “onboarding
call for finding data takes about 30 min, which happens again for
a user after the call is over.” (P2) In conclusion, our interviewees
note that “no-SQL analysis is great, but data needs to be found first”
(P6), underscoring the importance of data discovery.

Effective points of entry for discovery. Users “don’t have the mo-
tivation to browse hundreds of tables.” (P7) Hence, to start their
analysis, users have to be able to obtain faceted overviews as win-
dows into the data that is available to them. BI tools often collect
data that would enable such faceting, e.g., “frequency of use, re-
cency, ownership, lineage, annotations, or other information” (P1).
However, providing various views as metadata-based windows into
the data store is tedious and costly, as “many still have a separate
data modeling team, but it is really hard for them to keep up with the
growing number of artifacts” (P5). Furthermore, different users, or
teams often have various needs that cannot be satisfied with a single,
static UI.

Linking information. Understanding “where [a table] belongs in
the warehouse and what role it serves is very hard” (P6). At the
same time, this information can help users select “the data set that I
should use.” (P3) This is where linking information between different
metadata providers comes into play. Without such links, “even if you
have a set of curated tables, you don’t see the dashboard solving
90% of your problems” (P5). Additionally, “a maintainer of data
may not know what has been done with it downstream” (P4), which
asks for “more statistics about how data is used and how it interacts

with other data.” (P6) The need for such connections underlines
the importance of providing various exploration paths based on the
available metadata.

Intelligent search and filters. Finally, we found that “even if you
know what data is there, you don’t always know where to find it.”
(P5) Thus, a data discovery system needs to provide methods to
search for data. However, users might be aware of different metadata
information about the data they seek, such as ownership, usage
metrics, names, etc. As such, “a normal search bar is not enough
for more complex queries” (P6), and “more detailed search to filter
the search space” (P6) is needed. Similarly, when surfacing data,
there are often multiple similar data artifacts, to the point where “of
all the data that is very similar, I’m not sure which data set to use.”
(P4) Hence, such metadata-based querying is essential not only for
searching but also for filtering data.

3.2 Design Goals
Informed by our formative interviews and literature research, we
formulated three primary design goals for Humboldt. Our goal is
to integrate effectively and surface metadata for improved data dis-
covery. We decouple metadata providers from the data discovery UI
so that they can be quickly and independently updated, reused, and
extended. To this end, our primary design goals for the Humboldt
system framework were:

Expressivity. When providing an interface between metadata
providers and the UI to present data, where views are generated
automatically based on available data and metadata, there needs to
be a specification of how data can be fetched and what response
to expect. The different components of a data discovery UI, i.e.,
discovery, exploration, and search, can only react to changes in the
underlying data representation if data is specified in a predefined for-
mat. For example, one can generate various views for data discovery,
each of which might visualize data differently to provide optimal
representations based on the metadata used as a window into the
available data. This specification can also inform a query language
that a search interface utilizes. Furthermore, new UI elements can be
loaded when input values become available based on selected data
artifacts.

Composability. While a specification of data abstractions helps in-
form a data discovery UI, it is not necessarily sufficient for linking
information between metadata providers. However, connections be-
tween data elements are integral for further exploration from a given
data source and complex search queries. For example, inspecting
data involves common questions such as what the derived artifacts
of the data are or what other data I can use that is similar regarding
a specific metadata attribute. Additionally, one might want to use
metadata-based filters to display a subset of the data presented by
a view. This requires a composition of filter queries with the data
provided by a metadata provider for that view.

Configurability. The number of metadata types and sources useful
for data discovery can be large. We expect this number to only in-
crease with automated (e.g., AI-driven) active metadata extraction
approaches. Also, metadata collected in enterprises and techniques
for determining what is relevant and related are often domain and

{

"type": "joinable",

"name": "Name-Based",

"description": "Informs about joinable

tables by looking at column names.",

"representation": "GRAPH",

"input": [

{ "type": "TABLEID", "required": true }

],

"endpoint": "api/name_joinability",

"visible": {

"discovery": true,

"search": true,

},

}

Figure 3: Left: An example of a metadata provider specification
in Humboldt. Right: The resulting visualization in the data dis-
covery UI. This metadata provider requires a table as input and
returns a graph representation of joinability for the input table.

business-specific. A visual interface for data discovery must be adap-
tive and customizable to integrate and reap the benefits of different
forms of metadata and data discovery techniques. Therefore, the
third main design goal for Humboldt was the framework’s configura-
bility, including extensibility, to support a set of metadata providers
that can be changed whenever new techniques become available.
While this configurability helps developers who want to add or test
new functionality, it can also be helpful for end users of the data
discovery interface. Therefore, end users, particularly admins of data
systems, should be able to configure the integration of the metadata
providers most helpful for their analysis tasks.

4 HUMBOLDT SPECIFICATION
To formalize data representations in Humboldt, we use a specifi-
cation based on which views are generated and which informs the
interaction design of the data discovery system. Our motivation for
using such a specification to inform data discovery follows many of
the decision factors mentioned by Mernik et al. [19], as we aim to
facilitate better automation, enable better product line architecture
sharing, provide a generic representation of the underlying data struc-
ture, facilitate interaction, and inform the UI. While our approach is
designed to connect metadata with a data discovery system rather
than to inform visualization primitives, the declarative specification
(or configuration) of software artifacts and tools is common across
domains. The specification we propose for Humboldt can be adapted
to the business needs. However, some fundamental elements should
be included in any implementation of the Humboldt system frame-
work. We discuss these elements of the Humboldt specification in
the following.

4.1 Metadata Providers
Humboldt is designed to support different metadata providers to
fetch data based on the metadata at hand. Data fetching can be
done using, e.g., materialized views of a database, lookup tables,
SQL statements, or ML models. In short, the implementation of the
metadata provider is designed to be independent of the Humboldt
specification or the rendered data discovery UI. Instead, what meta-
data providers need to specify is not how the data is retrieved but
what type of data to expect. Therefore the Humboldt specification

expects a category and name for the metadata provider, the repre-
sentation of the returned data (i.e., list, embedding, graph, etc.), any
input values the metadata provider requires, and an endpoint for the
data discovery system to retrieve that data from. In many cases, it is
also helpful to provide information about the visibility of the meta-
data provider in different parts of the UI so that the data discovery
system does not get overloaded. In turn, in our implementation of
Humboldt, metadata providers are specified as shown in Figure 3.

The number of metadata providers might quickly grow beyond
the point where simultaneously exposing all these providers to the
user is feasible. To mitigate this, we enable the specification of a
metadata provider type to group metadata providers. The metadata
provider’s name helps disambiguate individual items in these groups,
whereas the description provides more accurate information on the
functionality of the provider. Metadata comes in different types and
forms, such as annotations (e.g., ownership information, data type),
interaction data (e.g., view count, creation date), or relatedness (e.g.,
data lineage, similarity, joinability, unionability). Hence, this data
might also be represented in different ways, e.g., as hierarchical data,
where information about child elements is provided, as graph data,
where a data artifact’s information includes connections, or simply
as numeric or textual annotations. To inform the UI about the data
representation to expect from the metadata provider, Humboldt’s
specification includes a representation field. Based on this represen-
tation, different views can be generated, as shown in Figure 2. Some
metadata providers might rely on user input before fetching data.
Therefore, the types of input values and whether that input value
is required for the metadata provider to be queried also need to be
specified.

4.2 Ranking
Once data is retrieved, ranking can help greatly with data discovery.
However, ranking weights are unlikely to stay the same throughout
the lifespan of a data discovery system. New metadata fields can
become available for ranking, and ranking priorities can change. One
might, e.g., want to highlight new data artifacts for systems that have
just been set up and converge to trusted and frequently used data
once a discovery system gets more mature, or even base data ranking
on weights obtained from an ML model that is continuously updated.
Additionally, metadata providers may have different metadata fields
or preferences, which in turn can be useful for ranking. Thus, we add
ranking weights to Humboldt’s specification to extend the flexibility
of Humboldt. While ranking weights can be defined individually for
each metadata provider, global ranking weights can be used as a

"ranking": [
{
"field": "favorite", "weight": 4.3

},
{

"field": "views", "weight": 1.5
}

]

Listing 1: Humboldt specification enables custom ranking
weights to be assigned to metadata fields without changing the
underlying ranking algorithm.

fallback. Whenever multiple metadata providers are combined e.g.,
for advanced search queries, the ranking results need to be combined.
Therefore, we employ a numeric ranking where metadata fields are
specified alongside a ranking weight (Listing 1).

Values of metadata fields are multiplied with the ranking factor,
which results in an overall ranking score that can be combined
between metadata providers. This way, the ranking algorithm code in
the UI does not need to be updated whenever ranking weights change
or new metadata becomes available. Instead, updating Humboldt’s
specification is sufficient for updating the ranking algorithm across
the data discovery system.

4.3 Application-specific Content
Depending on the use case, one might want to add application-
specific content to their specification to inform their data discovery
UI. The advantage of adding such content in the Humboldt specifi-
cation over simply hard-coding is that it can refer to other elements
in the specification. For example, in our use case (Section 6), we
wanted to provide a custom home page for the data discovery sys-
tem depending on the team memberships of the discovery system’s
user. This home page should show specific metadata providers for
individual teams and, therefore, was defined as shown in Listing 2.

This custom content is flexible and can be tailored to an organiza-
tion’s needs. However, this also means that it is not fully specified
and, as such, not transferable. A data discovery UI needs to know
about the fields and their structure; otherwise, it cannot use them.
We think that adding such custom information to the Humboldt spec-
ification helps inform specific aspects of a data discovery UI that
are not the same for different systems. If a custom field defined in
the specification is not supported by the UI implementation, it is
ignored.

4.4 Customization
A primary advantage of a specification-based interface for data
discovery is its configurability. The configuration options that Hum-
boldt’s specification provides include the list of metadata providers
and their availability in different views. Users might customize this
configuration based on their specific needs by modifying the specifi-
cation directly or through a UI, as shown in Figure 4. Additionally,

"custom": [
"field": "home",
"content": [

{
"data": ["Team", "Favorites", "Shared"],
"name": "A Team"

},
{

"data": ["Team", "Endorsed", "Recommended"],
"name": "Research"

},
]

]

Listing 2: Custom content in the Humboldt specification can
refer to metadata providers and is more flexible than hard-coded
references. However, the UI implementation has to know about
the custom fields and their types to display them.

Figure 4: Configuration of the team homepage in a data discov-
ery UI generated by Humboldt. Team administrators can select
from the list of metadata providers to enable their visibility and
use in the data discovery UI.

developers of metadata providers might add newly implemented
metadata providers to Humboldt’s specification while removing
ones that are not supported anymore. Administrators of an organiza-
tion that uses a data discovery system can configure which metadata
providers they want to use and where these providers are available
in the data discovery system. Similarly, individuals using the data
discovery system can hide and reorder the metadata providers that
they have access to. Finally, with the custom content described
in the previous subsection, a team manager within an organization
might even configure the recommendations and information surfaced
specifically for their team members (Figure 4).

5 INTERFACE CONSTRUCTION
A UI for data discovery can be automatically constructed using
Humboldt’s specification as outlined in Section 4. This includes
three main aspects of data discovery: overviews, exploration, and
search. We will explain how Humboldt’s specification can inform
all three aspects to support data discovery.

5.1 Overviews
Data overviews are required whenever the user has no clear idea
where to start their analysis. In such cases, Humboldt’s metadata
providers can be used to obtain data overviews. These overviews
can each provide different windows into the data warehouse or lake
as they are generated from different metadata providers and, thus,
based on various metadata fields. For example, the frequency or
recency of use, usage logs by similar user types or team members,
or information about the content can all be used to surface data to
the user. Whenever new metadata providers become available, they
can be added to Humboldt’s specification, automatically generating
views for them. Different users might rely on separate metadata in
their day-to-day analysis. With Humboldt, the views that are shown
to a user can be configured to match these needs. Since Humboldt’s
specification includes different data representation types, views can
be designed to represent the data at hand best, as shown in Figure 3.

Through a specification of the representation type, views can fol-
low the nature of the data. As such, data overview representations
might be visualized e.g., as lists, embeddings, graphs, or hierarchies
(Figure 6).

5.2 Exploration
Overviews cannot always precisely surface the data that helps the
user the most. To find this data, users need to be able to explore
from these overviews that serve as entry points to the data discovery
system. Humboldt helps with this exploration as it can automatically
surface further data upon interaction. Whenever a user interacts with
a data element, the metadata of this element can be used to inform
and surface more metadata providers. Similar to the Humboldt’s
overviews, this exploration approach utilizes the specification to
inform the data discovery UI about which metadata providers to
present. This way, starting from one data artifact, the user can ex-
plore related or similar data. For instance, Humboldt might extract
ownership, annotation, and usage information from a selected data
table. This information can be used to bring up more data from
that owner, data with similar annotations, or data with similar usage
characteristics. In turn, the user can start their exploration at one
data artifact, explore data that is similar with respect to different
metadata attributes, and finally land at the data that is most helpful
for their analysis.

5.3 Search and Filters
Users sometimes have a concrete idea about the data they are in-
terested in or want to filter the data presented to them through the
various metadata providers. This is where a query-based search and
filtering interface can help. Based on Humboldt’s specification, we
can generate a query language for a search interface. In Humboldt,
search and filters use the same metadata providers that are used to
generate views to fetch data. Using this query language, users can uti-
lize all the available metadata providers for search in addition to con-
ventional text-based search. These metadata provider-based search
elements are synthesized from Humboldt’s specification and support
the selection of input elements to inform the metadata providers.
As such, If a metadata provider requires an input value, Humboldt
can recommend plausible values based on the specified input type
as shown in Figure 5. For example, if a user wants to search for
documents owned by a specific user, Humboldt looks up that meta-
data provider and informs the user that they need to enter a user
id. Each query element returns a list of data artifacts. Combining
multiple query elements in a search query allows for an arithmetic

Figure 5: Search queries can be formed by combining free text
keywords, metadata field-value pairs, and logical operators.
Humboldt uses metadata specifications to determine admissible
field-value pairs and compositions. The top bar shows a newly
entered query element, while the bottom shows the active search
query.

combination of different search queries and their resulting data arti-
fact lists. In our use case, we implemented two logical connectors
(and, or) while supporting bracketed queries and negation for further
specification.

The difference between search and filters is the set of data arti-
facts it is performed on. Thus, when using the search query while
inspecting a view, the displayed data (i.e., from the specific meta-
data provider) is filtered. In contrast, all data available to the user
is considered when searching globally. In the following, we will
interchangeably use the terms search and filter.

We implemented two different search interfaces to show the flex-
ibility that Humboldt provides for implementing UI elements and
interaction concepts. These search interfaces vary in the way search
queries are presented and entered. We implemented a pill-based
query representation (Figure 5) and a prefix-based textual query lan-
guage (e.g., “:recent_documents() & bit”, which is a combination
of a metadata provider and text query).

6 USE CASE
To show how our Humboldt can generate a rich data discovery UI,
we used it as a framework to create one in Sigma Workbook.

6.1 Metadata Providers
To show the flexibility of Humboldt with respect to different meta-
data providers, we added a large set of available metadata providers
to the Humboldt specification for this use case. Some of the providers
we integrated are depicted in Figure 2.

The metadata associated with the providers became available as
new views for discovery and in the search interface. Depending
on the input values required for the metadata provider, Humboldt
automatically determines whether the metadata provider has all
the information needed for fetching data. The data returned by the
metadata provider is visualized using the representation specified in
the Humboldt specification as shown in Figure 6.

6.2 Discovery Views
While the data discovery UI can be automatically generated from
Humboldt’s specification, there must be visual primitives for the
different data representations that the specified metadata providers
return. In this use case, we implemented six different visual repre-
sentations for data. As such, data can be represented via tiles, in a
list, hierarchically, in a graph, as categories, and in an embedding
view (Figure 6). We briefly describe these views below.

Tiles. The tiles view displays data as boxes (tiles) in a grid. Tiles can
be ordered via specified ranking weights and provide an overview
of available data while not overwhelming the user with many small
data artifacts.

List. To display a large number of data artifacts, the tile represen-
tation may not be ideal as it requires a sizeable screen space. We
implemented an ordered list as another visual representation of data
artifacts. This list can be ordered based on the specified ranking or
by clicking any columns in the list view.

Hierarchy. The hierarchy (tree) view enables the navigation of one-
to-many relationships defined by metadata. For example, it is often
helpful to have metadata specifying which other data artifacts use a

given data artifact (e.g., a table can be used to create a visualization,
which in turn can be embedded in a dashboard, where the table,
visualization, and dashboard are examples of data artifacts.) While
this view currently uses tiles to represent the nodes at each level, it
is easy to add list-based or hybrid variants, dynamically switching
between the most effective node rendering depending on viewing
constraints. The hierarchy view supports traversing hierarchies of
arbitrary depths.

Graph. The graph view supports displaying graph-structured meta-
data (e.g., join paths) that describes how data artifacts are related
to each other. In addition to information about data artifacts (i.e.,
nodes), the graph view expects the metadata to contain information
about how they are connected.

Categories. Perhaps the most common metadata is categorical meta-
data, which describes a category of data artifacts. The category can
be, for example, a label, a data type, or an owner name. The cate-
gories view enables an effective exploration of data artifacts based
on their categories while providing an overview of the available
categories.

Embedding. The embedding view supports the display of data ar-
tifacts using their two-dimensional positional encoding metadata.
Projection (embedding) views are generally useful for exploring
large numbers of high-dimensional data points. The embedding view
shows data artifacts on a two-dimensional canvas as circles and,
therefore, expects the x and y coordinates to be included in the
data artifacts metadata. We anticipate embedding metadata to be
increasingly common with AI applications for data management and
analysis, where learned representations of data artifacts and their
elements are typically computed and used.

6.3 Interactive Exploration
Humboldt-generated UIs support interactive exploratory discovery
that enables users to navigate data using the metadata. Consider
a data artifact selected by a user as shown Figure 7; based on the
metadata associated with the data artifact, the user can view the other
data artifacts with the same badges (cf. Figure 2, Badged), the same
owners (cf. Figure 2, Owned By), and the same data type (Figure 2,
Type).

6.4 Search
If a data system already supports text-based search, Humboldt makes
it easy to integrate prefix-based search. As shown in Figure 5, com-
plex search queries can be constructed from text-based and metadata
provider-based search query elements. This combination is realized
through logical operators. The search functionality obtains its data
from the same metadata providers as the discovery views that are
specified in Humboldt. It determines the admissible values for meta-
data constraints in the query based on the Humboldtspecification
and helps users dynamically select from these values while entering
the query (Figure 5). Whenever a search query is entered, results
are shown in a new search tab (Figure 7, B) using the list view. The
keyword-based search can also be used to filter exploratory views.
For example, users can use the search functionality to show only the
matching data artifacts in the joinability graph (Figure 2, Joinable).

Categories

EmbeddingGraph

Hierarchy

List

Tiles

Figure 6: Examples of data discovery interfaces dynamically generated by Humboldt. Depending on metadata provider specification,
data can be displayed as tiles, a list, a hierarchy, a graph, an embedding (scatter plot), or categories.

7 EVALUATION
As our use case presented in Section 6 shows, the Humboldt frame-
work enables the integration of various metadata providers into a
data discovery UI. To evaluate how end users are affected by a data
discovery system implemented based on Humboldt, we recruited
six users at Sigma Computing for a first-use study. Our participants
were recruited from the Sales Engineering department to ensure
familiarity with customer needs as well as the system. None of our
participants had seen the Humboldt UI before this evaluation.

7.1 Setup, Tasks, and Protocol
Participants were first given a short overview of the data discovery
UI we introduced in Section 6. Then, they were asked to freely
explore the UI for a few minutes to familiarize themselves.

We designed Humboldt to support expressivity, composability,
and (re)configurability. We asked participants to perform four tasks
that were devised to evaluate the UI in these three aspects. To assess
how well the data discovery UI achieves expressivity and compos-
ability, three of the tasks required participants to use the different
views as entry points into data space, navigate starting from a spe-
cific data artifact to perform an exploratory search, and utilize search
and filtering functionality to find a data artifact of interest in directed
search, respectively. While testing these aspects of the data discovery
UI, participants assumed the role of a typical user of the system.
After these three tasks, we asked participants to switch to a team
admin role to test Humboldt’s configurability. The fourth task was
configuring the data discovery UI for a team they were managing.

Before each task, the experimenter verbally explained the task
and answered questions from participants. We used a think-aloud
protocol during task completion, whereas the examiner transcribed

notes. After completing the four tasks, participants completed a ques-
tionnaire eliciting feedback on the UI’s affordances. Each session
lasted about 30 minutes.

Task 1. The first task was to “find table AIRLINES, which has the
endorsed tag.” It was aimed to evaluate the effectiveness of the
metadata-based overviews. Participants could use the different entry
points to find a specific table based on a metadata field. Hence,
they had to understand the different metadata-based representations
before finding a particular datapoint .

Task 2. For the second task, we wanted to evaluate the effectiveness
of the Humboldt generated UI’s exploratory data discovery support.
The task was, therefore, to “find other elements that are similar to
the table w.r.t. type or badge.” Participants could use added views to
find data related to a selected data artifact.

Task 3. The third task aimed to assess the usability of the search and
filtering functionalities and the ability to compose different metadata
conditions using the keyword query interface. Therefore, we asked
participants to “find all workbooks created by user John Doe” from
the view they were currently on. To do this, participants needed to
use search and filtering and enter their query using metadata-based
filters.

Task 4. Finally, we asked participants to take up the role of a team
administrator and change the discovery views shown on a team’s
home page: “assume you are the administrator of A Team in your
organization and set the team’s home page to your preferred content.”
This task required them to reconfigure Humboldt based on their
team’s needs.

A

B

C

D

Figure 7: Screenshot of the data discovery UI built in Sigma Workbooks using Humboldt. Humboldt can automatically generate data
discovery UIs supporting directed and exploratory searches. (A) The keyword query search interface allows the use of metadata fields
and values together with free text keywords. (B) Overviews based on the available metadata are organized into tabs. (C) The active tab
displays the data provided by the selected metadata category (i.e., recommendations). The data shown here is filtered using the query
entered in the keyword query search field. (D) A content preview is shown when an individual data artifact is selected. In this case, the
data artifact is a table, and the preview shows a snippet of the table.

7.2 Results
All participants were able to complete all four tasks. They completed
Task 1 without help while following different routes. Three partic-
ipants jump-started with the keyword search and later discovered
the metadata-based views to complete the task. The rest directly
started from data discovery views to carry out the task. For Task 2,
we reminded three participants that new data discovery views might
be populated on selecting a data artifact, depending on the metadata.
When performing Task 3, half of the participants missed the first
condition and did not filter out only workbooks. After reminding
them of that, they were able to complete the task. Finally, for Task 4,
two participants needed help finding the team configuration setting
but had no problem configuring a team’s page.

We asked our participants to provide feedback and describe their
actions while performing the tasks. After completing all tasks, we
also asked them about the UI components they interacted with, focus-
ing on the search functionality, the discovery views, and Humboldt’s
customizability.

Views. Participants expressed they “like the different views a lot”
(P6) and that “it makes sense to have multiple views to present
data” (P5). “I like the scatter plot for finding outliers in usership”
(P6), “I like the usage graph” (P4), and “I would want more of
the categorical views” (P2). One participant indicated they “would
probably mainly use search as I don’t want to dig and find stuff”
(P4), and another would “want a global overview that I can filter”

(P5). For such users, the UI can be configured to show just a small
number of suggestions and direct everything else to search.

The feedback suggests that data discovery is user—and task-
dependent; different users have different preferences and needs
shaped by their experience and roles. Having data discovery
facets based on metadata providers and supporting different search
paradigms is desirable for users, which is facilitated by the expres-
sivity of Humboldt in this case.

Exploration. Participants also “like the ability to link selected things
to new metadata providers” (P1). When exploring, they found “the
preview of selected data really cool” (P3), from where they could
explore related data artifacts. They also gave positive feedback about
the ability to compose views with filters to explore further within a
metadata provider-driven views. For example, “for large amounts
of data, the usage view combined with filters would be constructive”
(P3).

Search and Filtering. Participants heavily used the search query
interface that Humboldt builds based on its metadata providers. They
commented that the “complex search queries I can construct are very
useful” (P6), “especially for more technical users” (P1). Humboldt
generates the query language based on the specification of metadata
providers and provides autocomplete suggestions for admissible
prefixes and values as the user types the query. Participants liked
that “you don’t have to learn the syntax to be able to search” (P2)
and“the search can suggest potential inputs” (P1). Two participants
also mentioned that they would prefer “a freeform search instead

of the query language” (P3). At the same time, three other partic-
ipants argued against freeform search, commenting that “people
like freeform search in theory, but in practice, it can be frustrating”
(P6). We concur that freeform (natural language) search has to work
well to be useful, for which the current autoregressive language
models provide an opportunity (e.g., [22, 24]). Nonetheless, natural
language is inherently ambiguous and is generally good for high
recall results but not necessarily efficient for high precision. A com-
promise could be to use our query language that is generated from
Humboldt’s specification and let users “convert the search into a free
text formula” (P4) or even a freeform search. The participants’ com-
ments above further highlight users’ varying data discovery needs.
We postulate that experienced users prefer high-precision interfaces
like query-based search, while others benefit from high-recall data
discovery functionalities at first.

Customizability. Participants reported that Humboldt’s customiz-
ability “can help find an entry into otherwise overwhelming amounts
of data” (P1) that is tailored to a user’s specific analysis needs, and

“can be a way to start the analysis process much more efficiently” (P6).
Participants thought “configurability would probably help customers”
(P5), as business users are used to customizing their workflow, e.g.,

“in GSuite I also customize how my calendar looks” (P5). While
participants only experimented with customizing a team’s landing
page, they “would imagine a whole section for customizing the
interface” (P2). This included configuring the metadata providers
that are shown as views over the metadata providers used in the
search query language and the order in which metadata providers
are shown. Participants also mentioned that they either “would not
want to touch the configuration” (P4), or “would also want to cus-
tomize how things look (e.g., list vs. tiles)” (P5), and “would like
to customize the order in addition to what is shown” (P6). Overall,
they found that “customizability would definitely be useful” (P6),
underlining the value of extending or adapting the data discovery UI
to specific needs.

Areas of Improvement. While the feedback for Humboldt was pos-
itive overall, participants also offered ideas for improvement. For
example, they “sometimes do not know what a metadata provider
means” (P4), and would like “a more detailed description of in-
dividual metadata providers” (P1). Views that required an input
could benefit from “an indication of the current input to a metadata
provider” (P4). They also commented on further enriching the cur-
rent exploratory search support, e.g., through “clicking on an owner
to see their data artifacts” (P5). Participants also suggested improv-
ing the layout of some UI elements: “it would be more intuitive if
related data were shown closer to selected metadata provider-based
views” (P1), “it was not clear for me that some metadata providers
were based on selected content” (P2), and “customization is a bit
buried right now” (P2). This paper focused on the Humboldt system
framework functionalities rather than the user experience design of
the generated data discovery UIs. The feedback emphasizes that they
both go hand in hand and that more work on the design with iterative
feedback cycles can further improve the user experience with data
discovery.

Post-Study Questionnaire. After the main study, we asked our
participants to complete a short survey about the discovery UI gen-
erated by Humboldt. They rated 12 statements (Figure 8) from 4

−40 −20 0 20 40 60 80 100
Percentage

0 1 2 3 4 5
Mean Rating

Finding Data

Overviews

Visualizations

Organization

Previews

Selection

Input

Queries

Metadata

Precise

Individual

Extendable

Strongly disagreeDisagreeNeither agree nor disagreeAgreeStrongly agree

Previews help me assess whether
I have selected what I'm looking for.

Selection-based recommendations
help me explore further.
Using selection as input values
helps me find what I'm looking for.

I like using the same queries that
produce views to filter data.

Metadata-based queries help me
find what I'm looking for.

The query-based search allows more
precise search intent expression.

Configuration can help tailor data
discovery to an individual's needs.
Configurability makes it easier
to add new functionality.

Entry Points

Exploration

Search

Configuration

With the presented system,
finding data was straightforward.

The various overviews were
helpful for finding relevant data.
Different visualizations
help me find what I'm looking for.

Organizing data based on metadata
makes data easier to find.

Figure 8: We elicited feedback from 6 participants responding
to 12 questions in 4 categories. The top axis and bars correspond
to the percentage of positive/negative answers, while the bottom
axis and circles show the mean and std for the Likert scale
ratings. Overall, the feedback was positive across all categories,
suggesting additional evidence that Humboldt achieves its design
goals. Entry points received the most mixed responses, primarily
due to the layout of UI elements, which can be easily improved
as Humboldt enables quick experimentation with data discovery
UIs.

categories regarding the UI on a 5-point Likert scale that ranged
from 1 (Strongly Disagree) to 5 (Strongly Agree). Their ratings were
positive about all aspects of the UI across categories on average
(mean:3.97, std:0.85). The participants were the most affirmative
about the metadata support for search (mean:4.33, std:0.75) and
previews (mean:4.33, std:1.11). On the other hand, they judged find-
ing data views (mean:3.33, std:0.75) and layout design (mean:3.50,
std:0.96) the least affirmatively. These suggest Humboldt generated
discovery UI can benefit from improved design for ease-of-use and
comprehension beyond its initial focus on data discovery affordances.
Also, all but one participant rated Humboldt’s configurability sup-
port enabling customization (mean:4.17, std:0.69) and extension
(mean:4.17, std:0.69) helpful.

8 DISCUSSION
Results of our evaluation validate the design goals of Humboldt
and support their overall successful execution. Feedback from the
participants suggests different users and teams have different data
discovery needs. Therefore, the ability to support multiple data dis-
covery paradigms, compose, customize, and extend the data discov-
ery functionalities while leveraging metadata is crucial. Metadata is
how organizations augment data with their business considerations
and domain know-how.

We conducted the user study to elicit in-context feedback on Hum-
boldt replicating its usage in practice. The discovery UI generated

as part of Sigma Workbook is fully functional and integrated, en-
hancing the ecological validity of our study and its results. As in any
user study, the number and the pool of participants who took part
in our user study constitute a biased sample of all user profiles and
goals relevant to data discovery UIs in data systems. Nonetheless, we
believe our participants’ regular interaction with users from diverse
domains to improve data-centric tasks and their understanding of
data discovery needs around these tasks based on these interactions
enabled gathering helpful feedback and insights.

Usability remains a significant challenge in user-facing data sys-
tems [8]. Natural language interfaces enabled by LLMs also provide
a potential [22, 24] to improve data discovery interfaces. Future
work can explore combining the precision of query-based search
enabling metadata constraints with the high recall of natural lan-
guage. Finally, we believe that Humboldt could be useful beyond
BI systems. Future work can also explore its integration with other
interactive data systems for better data discovery.

9 CONCLUSION
Metadata provides valuable business and usage context for data.
Therefore, supporting metadata as a first-class citizen in data discov-
ery interfaces is a good idea, enabling users to search and navigate
data using metadata attribute values. Organizations, teams, and in-
dividual users have different data discovery needs based on their
domains, tasks, and experiences. It is also a good idea to endow data
systems with the ability to easily integrate different metadata sources
for data discovery, support multiple data discovery paradigms and
views, and reconfigure and extend for custom and domain-specific
data discovery needs. The Humboldt framework we introduced here
operationalizes these ideas.

REFERENCES
[1] Ifeyinwa Angela Ajah and Henry Friday Nweke. 2019. Big data and business

analytics: Trends, platforms, success factors and applications. Big Data and
Cognitive Computing 3, 2 (2019), 32.

[2] Philip A Bernstein. 2005. The many roles of meta data in data integration. In
Proceedings of the 2005 ACM SIGMOD international conference on Management
of data. 792–792.

[3] Alex Bogatu, Alvaro AA Fernandes, Norman W Paton, and Nikolaos Konstanti-
nou. 2020. Dataset discovery in data lakes. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 709–720.

[4] Alex Bogatu, Norman W Paton, Mark Douthwaite, and André Freitas. 2022.
Voyager: Data Discovery and Integration for Data Science. In EDBT.

[5] Sonia Castelo, Rémi Rampin, Aécio Santos, Aline Bessa, Fernando Chirigati,
and Juliana Freire. 2021. Auctus: a dataset search engine for data discovery
and augmentation. Proceedings of the VLDB Endowment 14, 12 (July 2021),
2791–2794. https://doi.org/10.14778/3476311.3476346

[6] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel
Madden, and Michael Stonebraker. 2018. Aurum: A Data Discovery System. In
2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE,
Paris, 1001–1012. https://doi.org/10.1109/ICDE.2018.00094

[7] Raul Castro Fernandez, Essam Mansour, Abdulhakim A. Qahtan, Ahmed Elma-
garmid, Ihab Ilyas, Samuel Madden, Mourad Ouzzani, Michael Stonebraker, and
Nan Tang. 2018. Seeping Semantics: Linking Datasets Using Word Embeddings
for Data Discovery. In ICDE.

[8] Çağatay Demiralp. 2022. Challenges and Opportunities in Interactive Cloud Data
Analytics. https://tinyurl.com/yn5uy54m. Accessed: 04/08/2024.

[9] Adriane Chapman, Elena Simperl, Laura Koesten, George Konstantinidis, Luis-
Daniel Ibáñez, Emilia Kacprzak, and Paul Groth. 2020. Dataset search: a survey.
The VLDB Journal 29, 1 (2020), 251–272.

[10] Tianji Cong, James Gale, Jason Frantz, HV Jagadish, and Çağatay Demiralp. 2022.
WarpGate: A Semantic Join Discovery System for Cloud Data Warehouse. arXiv
preprint arXiv:2212.14155 (2022).

[11] Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Halevy, Hongrae Lee, Fei Wu,
Reynold Xin, and Cong Yu. 2012. Finding related tables. In SIGMOD.

[12] Grace Fan, Jin Wang, Yuliang Li, Dan Zhang, and Renée Miller. 2022. Semantics-
aware Dataset Discovery from Data Lakes with Contextualized Column-based
Representation Learning. arXiv preprint arXiv:2210.01922 (2022).

[13] John R Friedrich. 2005. Meta-data version and configuration management in multi-
vendor environments. In Proceedings of the 2005 ACM SIGMOD international
conference on Management of data. 799–804.

[14] James Gale, Max Seiden, Deepanshu Utkarsh, Jason Frantz, Rob Woollen, and
Çağatay Demiralp. 2022. Sigma Workbook: A Spreadsheet for Cloud Data
Warehouses. Proceedings of the VLDB Endowment 15, 12 (2022), 3670–3673.

[15] Yue Gong, Zhiru Zhu, Sainyam Galhotra, and Raul Castro Fernandez. 2021. Ver:
View Discovery in the Wild. arXiv preprint arXiv:2106.01543 (2021).

[16] Marti Hearst. 2009. Search user interfaces. Cambridge University Press.
[17] Ahmed Helal, Mossad Helali, Khaled Ammar, and Essam Mansour. 2021. A

demonstration of KGLac: a data discovery and enrichment platform for data
science. Proceedings of the VLDB Endowment 14, 12 (July 2021), 2675–2678.
https://doi.org/10.14778/3476311.3476317

[18] Gary Marchionini. 2006. Exploratory search: from finding to understanding.
Commun. ACM 49, 4 (2006), 41–46.

[19] Marjan Mernik, Jan Heering, and Anthony M Sloane. 2005. When and how
to develop domain-specific languages. ACM computing surveys (CSUR) 37, 4
(2005), 316–344.

[20] Microsoft. 2023. PowerBI. https://powerbi.microsoft.com
[21] Fatemeh Nargesian, Ken Q Pu, Erkang Zhu, Bahar Ghadiri Bashardoost, and

Renée J Miller. 2020. Organizing data lakes for navigation. In SIGMOD.
[22] OpenAI. 2024. SearchGPT. https://openai.com/index/searchgpt-prototype/. Ac-

cessed: 04/08/2024.
[23] Paul Ouellette, Aidan Sciortino, Fatemeh Nargesian, Bahar Ghadiri Bashardoost,

Erkang Zhu, Ken Q Pu, and Renée J Miller. 2021. RONIN: data lake exploration.
Proceedings of the VLDB Endowment 14, 12 (2021).

[24] Perplexity. 2024. Perplexity. https://www.perplexity.ai/. Accessed: 04/08/2024.
[25] Emmanuel Pietriga, Christian Bizer, David Karger, and Ryan Lee. 2006. Fres-

nel: A browser-independent presentation vocabulary for RDF. In International
semantic web conference. Springer, 158–171.

[26] Dennis Quan, David Huynh, and David R Karger. 2003. Haystack: A platform
for authoring end user semantic web applications. In International semantic web
conference. Springer, 738–753.

[27] El Kindi Rezig, Anshul Bhandari, Anna Fariha, Benjamin Price, Allan Vanterpool,
Vijay Gadepally, and Michael Stonebraker. 2021. DICE: data discovery by
example. Proceedings of the VLDB Endowment 14, 12 (July 2021), 2819–2822.
https://doi.org/10.14778/3476311.3476353

[28] Salesforce. 2019. Metadata API. https://www.tableau.com/developer/tools/
metadata-api. Accessed: 05/25/2024.

[29] Ben Shneiderman. 1994. Dynamic queries for visual information seeking. IEEE
software 11, 6 (1994), 70–77.

[30] Michael Stonebraker, Ihab F Ilyas, et al. 2018. Data Integration: The Current
Status and the Way Forward. IEEE Data Eng. Bull. 41, 2 (2018), 3–9.

[31] Tableau. 2023. Tableau. https://www.tableau.com
[32] Wenbo Tao, Adam Sah, Leilani Battle, Remco Chang, and Michael Stonebraker.

2022. Kyrix-J: Visual Discovery of Connected Datasets in a Data Lake. (2022),
6.

[33] ThoughtSpot. 2021. Metadata API. https://docs.thoughtspot.com/software/7.0/
metadata-api. Accessed: 05/25/2024.

[34] Ryen W White and Resa A Roth. 2009. Exploratory search: Beyond the query-
response paradigm. Synthesis lectures on information concepts, retrieval, and
services (2009).

[35] Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit Chaudhuri.
2012. Infogather: entity augmentation and attribute discovery by holistic matching
with web tables. In SIGMOD.

[36] Ka-Ping Yee, Kirsten Swearingen, Kevin Li, and Marti Hearst. 2003. Faceted
metadata for image search and browsing. In Proceedings of the SIGCHI conference
on Human factors in computing systems. 401–408.

https://doi.org/10.14778/3476311.3476346
https://doi.org/10.1109/ICDE.2018.00094
https://tinyurl.com/yn5uy54m
https://doi.org/10.14778/3476311.3476317
https://powerbi.microsoft.com
https://openai.com/index/searchgpt-prototype/
https://www.perplexity.ai/
https://doi.org/10.14778/3476311.3476353
https://www.tableau.com/developer/tools/metadata-api
https://www.tableau.com/developer/tools/metadata-api
https://www.tableau.com
https://docs.thoughtspot.com/software/7.0/metadata-api
https://docs.thoughtspot.com/software/7.0/metadata-api

	Abstract
	1 Introduction
	2 Related Work
	3 Framework Design
	3.1 Formative Interviews
	3.2 Design Goals

	4 Humboldt Specification
	4.1 Metadata Providers
	4.2 Ranking
	4.3 Application-specific Content
	4.4 Customization

	5 Interface Construction
	5.1 Overviews
	5.2 Exploration
	5.3 Search and Filters

	6 Use Case
	6.1 Metadata Providers
	6.2 Discovery Views
	6.3 Interactive Exploration
	6.4 Search

	7 Evaluation
	7.1 Setup, Tasks, and Protocol
	7.2 Results

	8 Discussion
	9 Conclusion
	References

