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ABSTRACT

Understanding causal relationships is crucial in fields like econom-
ics, healthcare, marketing, and e-commerce for effective decision-
making. Unlike predictive analysis, causal inference provides deeper
insights into outcomes. However, real-world datasets often lack key
variables and contain redundancies, complicating analysis. This
paper introduces a framework that integrates relevant data from
varied sources to facilitate robust causal analysis. Our iterative
pipeline addresses high-dimensional covariates, missing data, and
incomplete joins using Double Machine Learning to control for con-
founding factors. Empirical results show the framework’s ability to
uncover meaningful causal relationships, enhancing data accuracy
and improving the reliability of machine learning models.
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1 INTRODUCTION

Causal inference is fundamental to decision-making and policy
evaluation, addressing pivotal questions that predictive analysis
cannot tackle. Its significance spans economics, healthcare, mar-
keting, and e-commerce, offering critical insights into various do-
mains. Furthermore, its pivotal impact has been recognized for
enhancing trustworthy machine learning through robustness to
distribution shifts and domain adaptation, ensuring fairness, inter-
pretability, explainability, generalizability, representation learning,
and beyond [2, 12, 21].

In fields like economics, epidemiology, and social sciences, causal
inference succeeds because datasets are carefully collected and cu-
rated to test specific hypotheses [5, 14, 16]. These datasets ensure
completeness and relevance. In contrast, real-world data, often col-
lected for operational purposes, is diverse and incomplete, lacking
key confounding variables and including redundant ones, compli-
cating causal analysis [4, 24].

Despite these challenges, data discovery and enrichment are
essential for effective causal analysis. Open data lakes can mitigate
real-world data limitations by aggregating diverse data sources.
Advanced data discovery tools identify relevant datasets, ensuring
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comprehensive and accurate causal inference. This integration en-
hances dataset quality, improving the reliability and interpretability
of causal effect estimations and machine learning models.

This paper presents an initial frameworkDEMA (DataEnrichment
andMerging for Causal Analysis) for data curation for causal in-
ference, aiming to systematically identify and integrate relevant
data from diverse sources to facilitate robust causal analysis. This
process is challenging due to high-dimensional covariates, missing
data, and the issue of incomplete joins in database systems, where
attempting a full outer join often results in sparse or empty tables
because not all tuples from different datasets have matching keys.
Furthermore, aggregating data according to each unit in the base
table using pre-defined aggregations can lead to loss of information,
introducing biases in the analysis. To address these challenges, we
propose an iterative pipeline that curates and ranks features based
on their impact, which cannot be explained by other covariates.

To manage high dimensionality, we use Double Machine Learn-
ing (DoubleML), which combines machine learning with economet-
ric techniques to control confounding factors and ensure robust
causal inference [3, 11]. A data discovery tool identifies and merges
relevant datasets in a data lake, allowing DoubleML to address
biases and provide reliable causal effect estimations. Experiments
demonstrate our approach’s ability to uncover meaningful causal re-
lationships in complex datasets, enhancing data accuracy and mak-
ing machine learning models more dependable and interpretable.

2 BACKGROUND ON CAUSAL INFERENCE

The goal of causal inference is to estimate the effect of a treatment
variable 𝑇 on an outcome variable 𝑌 . For instance, in the context of
our study, we might want to know the effect of high precipitation
(𝑇 ) on the number of collisions (𝑌 ). The gold standard of causal
inference is randomized controlled experiments, where the popu-
lation is randomly divided into a treated group that receives the
treatment (denoted by 𝑑𝑜 (𝑇 = 1) for a binary treatment [21]) and a
control group (𝑑𝑜 (𝑇 = 0)). One popular measure of this effect is the
Average Treatment Effect (ATE). In a randomized experiment, the
ATE is the difference in the average outcomes for the treated and
control groups [21, 22]:

ATE(𝑇,𝑌 ) = E[𝑌 | 𝑑𝑜 (𝑇 = 1) ] − E[𝑌 | 𝑑𝑜 (𝑇 = 0) ] (1)

Randomized experiments are often infeasible, and in practice, we
need to estimate causal effects from observational data, which is
collected passively. Business data is inherently observational.Obser-
vational Causal Analysis offers a reliablemethod for causal inference
with specific assumptions. Controlled trials with randomization
address the issue of confounding factors—variables influencing both
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treatment and outcome. One can adjust for these covariates or
confounders 𝑍 , which should be identified from background knowl-
edge, to achieve unbiased causal inferences from observational data.
Two essential assumptions are Unconfoundedness: 𝑌 ⊥ 𝑇 | 𝑍 = 𝑧

and Overlap: 0 < Pr(𝑇 = 1 | 𝑍 = 𝑧) < 1. Under these conditions,
the average treatment effect (ATE) is expressed as:

ATE(𝑇,𝑌 ) = E𝑍
[
E[𝑌 | 𝑇 = 1, 𝑍 = 𝑧 ]−

E[𝑌 | 𝑇 = 0, 𝑍 = 𝑧 ]
]

(2)

Equation 2 can be estimated from data. There are various method-
ologies for estimating the ATE in Equation 2. One popular technique
is matching methods [19], which pair treated and untreated units
based on their observed covariates to mitigate confounding bias.
However, matching methods often struggle in high-dimensional
settings. To address these challenges, both parametric and semi-
parametric techniques have been developed, incorporating a range
of regression models and advanced machine learning algorithms.
These techniques typically estimate the propensity score (𝑚0 (X) =
E[𝑇 = 1 | X]), which quantifies the probability of treatment given
covariates X, and the prognostic score (𝑔0 (X) = E[𝑌 | 𝑇 = 0,X]),
which predicts the expected outcome without treatment. A state-
of-the-art methodology in this field is Double Machine Learning
(DML) [11], which uniquely combines both propensity and prog-
nostic scores. DML ensures robust causal effect estimation by con-
trolling for model misspecification and leveraging the complexity
of machine learning models, making it particularly effective for
causal inference in high-dimensional data settings.

3 DEMAMETHODOLOGY

The overall architecture of DEMA is shown in Figure 1. The input
is a database instance 𝐷 from a schema S(𝜅,X,𝑇 , 𝑌 ), containing 𝑁

units of analysis, such as patients, transactions, or events, referred
to as the unit table. Each unit is identified by a key𝜅𝑖 , with attributes
X𝑖 and an outcome variable 𝑌𝑖 . The system integrates and analyzes
data from various sources to curate a dataset with features that
causally impact the outcome. This curated data is suitable for causal
analysis, ensuring relevant features are correlated with outcomes
without being explained by other attributes. The data and gener-
ated report help determine if additional data collection is needed.
The pipeline includes Data Discovery, Join Viability Assessment,
Data Integration and Enrichment, and Impact Analysis, working
iteratively to achieve robust causal inference. Next, we detail each
component.

Data Discovery. The process begins with data discovery, where
we explore a data lake to identify relevant datasets that can augment
our unit table. Using the joinable attributes of 𝐷 as query columns,
i.e., columns that can be used for joining and integration, we search
for candidate tables within the data lake that share high similar-
ities with these columns. Examples of joinable attributes include
patient_id , date, location , zipcode, product_id, transaction_id ,
and employee_id, which are common across different tables and
can be used to collect more fine-grained information from other
tables. Common techniques and existing tools for data discovery
could be used here [6–10]. In this work, DEMA utilizes exact match-
ing as described in [7], where the Jaccard containment between the

query column and all other columns in the data lake is computed
in order to select relevant tables for augmentation.

While joinable features can be treated as treatments and co-
variates, data integration based on these features does not add
information due to functional dependencies [15]. Data enrichment
for causal inference has two main contributions: 1) Using joinable
features as covariates is often infeasible due to many distinct values,
leading to high dimensionality and poor properties for causal ef-
fect estimators. 2) Fine-grained features provide more interpretable
results and better covariate selection. For example, instead of using
the date from collision data, joining with a weather table can reveal
specific weather-related factors like precipitation as significant,
rather than just the month.

Join Viability Assessment. Once potential tables are identified,
we analyze candidate joins. Given a relevant table 𝑅 and a joinable
variable 𝐽 , a full outer join often results in sparse or empty tables
due to several factors: 1) Missing or incomplete data in some tables,
lacking information for certain units or their joinable attributes,
like lab test results for only a subset of patients. 2) Data quality
issues, such as inconsistencies in data entry, different date formats,
or typographical errors in zipcode entries. 3) Missingness could be
a feature itself, indicating significant underlying factors like lack of
access to services. 4) The inherent heterogeneity of data, requiring
partitioning and independent analysis of different subpopulations,
as products or customer types may fundamentally differ.

We capture all these cases using an indicator variable, a binary
variable that shows whether a unit in the unit table successfully
joins with the relevant table on the joinable attribute. Formally,
given a unit 𝑖 in the unit table𝐷 and relevant table 𝑅 with a joinable
attribute 𝐴, the indicator variable 𝐼𝑅,𝐴 (𝑖) is defined as:

𝐼𝑅,𝐴 (𝑖) =
{
1 if unit 𝑖 has a matching tuple in 𝑅 on 𝐴,

0 otherwise.

This variable can be used as a feature itself, and in the Impact
Assessment, we analyze its effect on outcomes. If missingness is due
to incomplete information, any correlation indicates non-random
missingness, potentially biasing results and necessitating additional
data collection. When missingness is a feature itself, it highlights
how factors like lack of access to services or product unavailability
impact outcomes. DEMA performs a detailed assessment of each
join to ensure robust causal inference.

Data Integration and Aggregation. After Join Viability Assess-
ment, the joins are performed, and the data is summarized for
many-to-one and many-to-many joins using aggregation. Summa-
rization is needed since integration and enrichment should not
change the units of analysis, which is pivotal for causal and statis-
tical analysis. Joining without aggregation distorts the distribution
of the unit table and can lead to misleading results. However, since
aggregation can lead to loss of information, DEMA performs sensi-
tivity analysis to assess the impact of this loss and ensure that the
aggregated data still captures the essential causal relationships.

Impact Assessment. After Data Integration and Aggregation, the
next step is to evaluate the impact of the attributes. This involves
updating the impact of attributes that were previously present and
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Figure 1: A visual representation of our pipeline Discovery-Enrich-Merge-Analyze (DEMA). We start with a base table fed to a

data lake that returns candidate tables and joins. These candidates undergo merging, aggregation, and causal inference using

DoubleML, leading to our final results.

computing the impact of new attributes obtained through enrich-
ment. The new features can now be used as additional covariates.
To achieve this, covariate selection is performed. DEMA uses Large
Language Models (LLMs), in particular GPT-4, for covariate selec-
tion, which has been shown to be effective in identifying relevant
features in high-dimensional data [1, 18, 24]. This selection process
is crucial for improving the robustness and validity of the causal
inference. We then use DoubleML, which is particularly effective
in dealing with very high-dimensional data, a common scenario in
our domain where integration involves potentially several tables.

Putting Everything Together. Starting with the base table, DEMA
evaluates existing features and performs feature engineering to
extract as many features as possible, identifying which variables
should be used for data discovery. The impact assessment module
computes and ranks the importance of each variable. We begin
discovery with top-ranked joinable variables from the external data
lake. For each candidate table, DEMA assesses join viability, gener-
ates a report, and performs integration and aggregation if feasible.
The enriched base tables are analyzed, retaining only significant at-
tributes. This recursive process continues, identifying new joinable
variables and exploring all possible joins until no new features are
added and the ranking stabilizes.

4 EXPERIMENTS

This section evaluates the efficacy of using DEMA for data enrich-
ment tailored for causal inference.

4.1 Setup

Data. Our data lakes and base data tables are extracted from
the NYC Open Data resource [20]. The size of these tables ranges
from 100 rows to several million rows. The taxi collision data lake
comprises thirty tables, while the school data lake includes twenty
tables.

Scenario 1: Taxi Collisions. The base table for analysis consists
of taxi collisions, including attributes such as date and number
of collisions. The target column is the number of collisions. The
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Figure 2: Join Viability Assessment report for tables from the

New York City data lake using the base table of taxi collisions

primary key for this table is the date, which is initially used to join
with various other datasets from New York City.

Scenario 2: School Progress Reports. The base table for anal-
ysis consists of school progress reports, which include information
on school type, scores in various categories relating to school en-
vironment, college readiness, and more. The target column is the
school percentile, which scores school quality on a scale from zero
to one hundred, based on multiple factors including the school
environment and graduation rates. The primary key for this table
is DBN (District, Borough, and Number), which is initially used for
data discovery and joining school tables across New York City.

We used the following two data lakes: 1) New York City, with
datasets like weather, construction records, and NYPD reports; 2)
Schools, with datasets on discipline records, district information,
survey results, and performance reports.

Implementation Details. For feature engineering and covariate
detection, we leveraged GPT-4 to automate these tasks. For impact
assessment, we employed DoubleML, using four models: Lasso
Regression, XGBoost, Random Forest, and Decision Tree. If at least
three of the four models returned significant results (p-value <
0.05), we kept the variable and reported the magnitude of the mean
coefficient.



4.2 Results

Taxi Collisions in New York City. The goal of this scenario is to
identify factors contributing to the number of collisions. We first
featurize our base table by translating the date to years, months, and
weekdays. Initial results show the year has a marginal impact on
collisions. Using the DEMA pipeline, we integrate various datasets
from the New York City data lake for deeper insights.

Each iterative experiment generates a report highlighting the
most impactful factors and tables. Our analysis reveals that pre-
cipitation and weather data are the most influential, significantly
affecting collision rates. After our iterative approach, we recur-
sively join tables based on their impact, systematically enhancing
our dataset, providing a nuanced understanding of collision deter-
minants. As shown in Table 1, by the final iteration, precipitation
and crash month are the most impactful factors.

In these experiments, it’s crucial to acknowledge potential biases
in discovered tables due to data collection methods, as discussed in
the Join Viability Assessment section. For instance, a pole construc-
tion table only including data from construction days introduces
significant bias, potentially obscuring true causal relationships and
reducing the validity of our findings. When joining this table with
our base table, the dataset only includes construction days. Figure 2
shows that this bias results in a higher observed impact, indicating
that construction days correlate with more collisions.

Our results can help local officials target interventions and im-
prove traffic safety around construction zones, reducing accidents
and enhancing public safety.

School Performance. Using the school data lake, we aim to iden-
tify attributes indicative of a school’s percentile, reflecting overall
quality and performance.

We first featurize DBN (District, Burough, Number) into district
and borough, finding that the district has the highest impact on
school percentile, setting a baseline for understanding geographic
influences on performance. To delve deeper, we apply our iterative
DEMA pipeline.

The pipeline ranks tables by impact, revealing physical education
instructors and math proficiency as the most impactful. The "ratio
of full-time licensed PE teachers to students" shows that schools
with higher teacher-to-student ratios tend to have higher scores.
This suggests that teacher-student ratios are more significant than
the amount of physical education. By recursively joining tables,
we enhance our dataset, showing that both academic and non-
academic factors, including disciplinary actions, are key indicators
of school performance. As shown in Table 2, with our second table
of Math being added, students with high math proficiency and ratio
of teachers to students from the PE Teachers table is our highest
impact. The final iteration shows that Math proficiency and school
discipline have the highest effect compared to our original findings
of ratio of teacher to student ratio with our more comprehensive
final dataset.

These results, shown in Table 2, highlight the complex interplay
between school environment and student outcomes. The DEMA
pipeline’s findings can help school administration implement bene-
ficial changes to improve performance.

Iteration Table Joined Most Impactful

0 Base Table Year, Month
1 + Weather Precip, Air Temp
2 + Project Status Precip, Air Temp
3 + Manufactures Precip, Crash month

Table 1: Top 2 factors after every subsequent recursive join

for the taxi collisions experiment

Iteration Table Joined Most Impactful

0 Base Table District, School level
1 + PE Teachers Ratio teachers to students, District
2 + Math Level 4, Ratio teachers to students
3 + Discipline Level 4, Profane language

Table 2: Top 2 factors after every subsequent recursive join

for the school ratings experiment

Sensitivity And Runtime Analysis. In our experimentation, we
find that our results are consistent across different aggregation
methods. While the impact values vary, the top-ranking results
remain the same when using mean, median, max, and min aggrega-
tions. The runtime for the NYC Taxi collision experiment, which
involves 30 tables with a large number of rows, is approximately
five minutes. This demonstrates the efficiency of our approach in
handling extensive datasets.

5 RELATEDWORKS

Data discovery has advanced significantly, especially in integrating
data sources like data lakes [6, 8, 9, 13]. These efforts have laid the
groundwork for managing and utilizing large, diverse datasets.

Feature augmentation, a key aspect, involves generating new
features from existing data to enhance model performance and
uncover hidden patterns, improving predictive accuracy and ro-
bustness [10, 17].

Several frameworks integrate external data with causal infer-
ence, leveraging multiple data sources for robust analysis [4, 23, 24].
Our aim is to build on these frameworks, exploring causal analysis
through data discovery and feature augmentation. Utilizing en-
riched datasets and augmented features enhances the accuracy and
robustness of causal inferences, extending existing methodologies.

6 CONCLUSIONS AND FUTURE DIRECTIONS

We developed an initial framework for data discovery and causal
inference using data lakes, demonstrating its effectiveness with
real-world datasets. Our approach helps users identify and rank
causally significant attributes using data discovery tools and ad-
vanced causal inference methods. Empirical results highlight its
potential in uncovering significant causal relationships, reducing
manual effort, and ensuring robust results. This work offers a scal-
able solution, adaptable to various domains.

Future work may optimize the pipeline, enhance efficiency, and
apply it to more datasets. Improvements include handling heteroge-
neous units, addressing biases, and developing adaptive algorithms
to adjust based on data characteristics. Expanding the framework
to healthcare, finance, and social sciences would demonstrate its
versatility and broad impact.
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