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ABSTRACT
Large Language Models (LLMs), typified by OpenAI’s GPT, have
marked a significant advancement in artificial intelligence. Trained
on vast amounts of text data, LLMs are capable of understanding
and generating human-like text across a diverse range of topics.
This study expands on the applications of LLMs, exploring their
potential in data preprocessing, a critical stage in data mining and
analytics applications. Aiming at tabular data, we delve into the ap-
plicability of state-of-the-art LLMs such as GPT-4 and GPT-4o for a
series of preprocessing tasks, including error detection, data imputa-
tion, schema matching, and entity matching. Alongside showcasing
the inherent capabilities of LLMs, we highlight their limitations,
particularly in terms of computational expense and inefficiency. We
propose an LLM-based framework for data preprocessing, which in-
tegrates cutting-edge prompt engineering techniques, coupled with
traditional methods like contextualization and feature selection,
to improve the performance and efficiency of these models. The
effectiveness of LLMs in data preprocessing is evaluated through
an experimental study spanning a variety of public datasets. GPT-4
emerged as a standout, achieving 100% accuracy or F1 score on 4 of
these datasets, suggesting LLMs’ immense potential in these tasks.
Despite certain limitations, our study underscores the promise of
LLMs in this domain and anticipates future developments to over-
come current hurdles.
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1 INTRODUCTION
Large Language Models (LLMs), such as OpenAI’s GPT and Meta’s
LLaMA, are becoming an increasingly important aspect of the AI
landscape. Thesemodels, essentiallyML systems, are trained on vast
amounts of text data and characterized by an augmented number
of parameters. They are capable of understanding and generating
text across a diverse range of topics, thereby finding applications
in numerous tasks. Consequently, research involving LLMs has
garnered significant attention from both academia and industry.
Recent endeavors have successfully leveraged LLMs for data man-
agement and mining. For instance, LLMs have been used for SQL
generation [16], database diagnosis [5], data wrangling [12], and
data analytics [2].
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This paper investigates the potential of utilizing state-of-the-art
(SOTA) LLMs for data preprocessing, a crucial step that refines
data before it can be harnessed for downstream data mining and
analytics applications. Given their comprehensive understanding
of language semantics and structures, LLMs can identify errors or
matches in text data. For example, they are capable of detecting
spelling mistakes, grammar issues, contextual discrepancies, and
near-duplicate records. Consequently, the application of LLMs in
data preprocessing can pave the way for tackling tasks such as error
detection, data imputation, schema matching, and entity matching.

While LLMs hold considerable potential for data preprocessing
tasks, it is critical to comprehend their capabilities and limitations
for effective application. Thus, as a preliminary study on employing
LLMs for data preprocessing, this paper provides the following
contributions.
(1) We examine the inherent knowledge and superior reasoning
and learning abilities of LLMs, which can be further enhanced
through zero- and few-shot prompting. These strengths position
LLMs as competitive candidates for various data processing tasks.
However, their computational expense and potential inefficiencies
present challenges. We provide an analysis of these strengths and
limitations in the context of data preprocessing.
(2) We propose a framework for LLM-based data preprocessing.
This framework integrates a series of SOTA prompt engineering
techniques, including zero-shot instructions, few-shot examples,
batch prompting, as well as traditional approaches such as contex-
tualization and feature selection. We specifically instruct LLMs to
follow an answer format and reason before providing an answer
to enhance performance. Few-shot examples are used to condition
LLMs so that they can learn error criteria, means of imputation,
matching conditions, etc. Batch prompting amalgamates multiple
data instances in a prompt to reduce token and time costs.
(3) We conduct experiments on 12 datasets for four data prepro-
cessing tasks. We evaluate popular LLMs such as GPT-3.5, GPT-4,
and GPT-4o. The results indicate that GPT-4 generally outperforms
existing solutions, achieving 100% accuracy or F1 score on 4 out of
12 datasets. GPT-3.5 also delivers competitive performance and is
recommended for data preprocessing. GPT-4o delivers inconsistent
performance: competitive on data imputation and entity matching
but mediocre on error detection and schema matching. The evalua-
tion also sheds light on the effects of the proposed components of
the solution framework on accuracy and efficiency.

2 PRELIMINARIES
2.1 Data Preprocessing
In this initial exploration of large language models (LLMs) for data
preprocessing, we concentrate on tabular data. We target the fol-
lowing tasks: error detection (ED), data imputation (DI), schema
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matching (SM), and entity matching (EM). Other typical data pre-
processing tasks, such as data fusion and data wrangling, are re-
served for future work. Diverging from the traditional definition
that presents the entire dataset and finds or fixes all the errors (or
matches, etc.) within, we define the problem by handling one record
(or a pair) at a time, so the prompt to an LLM can be easily written.
We term each input object a data instance, i.e., a tuple for ED and
DI, a pair of attributes for SM and a pair of tuples for EM.

2.2 Large Language Models
LLMs have become one of the hottest topics in the AI research
community [20]. We discuss the strengths and limitations of using
LLMs for data preprocessing.

Strengths. (1) With their comprehensive understanding of language
semantics and structures, and the knowledge acquired through
training on vast amounts of text data, LLMs are general problem
solvers capable of identifying errors, anomalies, and matches in
textual data, without needing human-engineered rules [13] or fine-
tuning for specific tasks. (2) Most LLMs provide a prompting in-
terface with which users can interact and assign tasks in natural
language, contrasting with existing data preprocessing solutions
that require computer programming or specific tools (e.g., Holo-
Clean [15] and Magellan [8]). (3) LLMs are excellent reasoners [7],
enabling them to not only return data preprocessing results but also
provide the reasons for these results. In this sense, their answers
are more interpretable than those of other DL approaches. (4) LLMs
can be conditioned by few-shot prompting [1]. As such, we can
tune the criteria for data preprocessing tasks (e.g., the degree of
matching) using few-shot examples.

Limitations. (1) For data preprocessing, one of the major limitations
is the difficulty in domain specification [12]. When dealing with
data from highly specialized domains, training LLMs can be costly
and sometimes even impossible due to frozen parameters. (2) LLMs
sometimes generate text that is plausible-sounding but factually in-
correct or nonsensical, as they lack a fundamental understanding of
the world and rely solely on the patterns they learned during train-
ing. (3) LLMs often require substantial computational resources,
thereby increasing the cost of use and compromising the efficiency
and scalability of data preprocessing on large-scale data.

3 METHOD
We design a prompt template as follows.

You are a database engineer.
[Zero-shot prompt]
[Few-shot prompt]
[Batch prompt]

Initially, we instruct the LLM to impersonate a database engineer.
Other prompt components are marked within [] and will be dis-
cussed throughout this section.

3.1 Zero-shot Prompting
Zero-shot prompting is a technique that guides LLMs to generate
the desired output. It has been demonstrated to effectively enhance
the reasoning abilities of LLMs [7]. We employ zero-shot prompting
to specify both the task and the answer format. Specifically, we

adhere to the chain-of-thought paradigm [18], in which the LLM is
expected to reason before delivering the answer. An example of a
zero-shot prompt for DI is as follows:

You are requested to infer the value of the "city" attribute based on the
values of other attributes.
MUST answer each question in two lines. In the first line, you give the
reason for the inference. In the second line, you ONLY give the value
of the "city" attribute.

We design specific zero-shot prompts for ED and DI. For ED,
since we provide the entire record 𝑟 but ask the LLM to detect
an error in one attribute 𝑟 𝑗 at a time, the LLM might erroneously
identify an error in attribute 𝑟 𝑗 ′ , where 𝑗 ′ ≠ 𝑗 . To avoid this, we
prompt the LLM to confirm the target attribute with: Please confirm
the target attribute in your reason for inference. For DI, we provide a
hint about the data type of the attribute to be imputed. For example,
given the hint The "hoursperweek" attribute can be a range of
integers, the LLM will respond with a range instead of a single
number.

3.2 Few-shot Prompting
Few-shot prompting [1] involves providing a small selection of
examples to condition the LLM for tasks that deviate from its pre-
training objectives (e.g., text completion and code generation). We
apply few-shot prompting by manually selecting a subset of data
instances from the dataset and labeling them. For example, the
few-shot examples for DI are presented as follows:

Users:
Question 1: Record is [Data Instance 1]. What is the city?
...
Assistant:
Answer 1: [Reason 1]
[Answer 1]
...

The data instances here adhere to the contextualization introduced
in Section 3.3. Users are required to provide plausible reasoning for
few-shot examples. For instance, given [name: "carey’s corner", addr:
"1215 powers ferry rd.", phone: "770-933-0909", type: "hamburgers",
city: ???] as [Data Instance 1], [Reason 1] would be The phone
number "770" suggests that the city should be either Atlanta or
Marietta in Georgia. The addr attribute suggests a place in Marietta.,
and [Answer 1] would be Marietta.

3.3 Contextualization
Given that LLMs intake raw text as input, we convert the contents
in each data instance to a text sequence in the following format:

[𝑥1.name: "𝑥1.value", . . ., 𝑥𝑛 .name: "𝑥𝑛 .value"]

𝑥𝑖 denotes the 𝑖-th attribute of a data instance, name denotes to the
attribute name, value denotes the cell value, and 𝑛 is the number
of input attributes. Specifically, we use ??? to denote missing values
for DI, and 𝑥1.name = name and 𝑥2.name = description for SM.

3.4 Feature Selection
If metadata is available, users can manually select a subset of fea-
tures to improve performance. For instance, when imputing a restau-
rant’s location, the phone number and street name are relevant



Table 1: Comparison with baselines, measured in accuracy (%) for data imputation and F1 score (%) for the other tasks. LLMs are
equipped with the best setting. “N/A” denotes not applicable or not reported in their original papers.

Error Detection Data Imputation Schema
Matching

Entity Matching

Methods Adult Hospital Buy Restaurant Synthea Amazon-
Google

Beer DBLP-
ACM

DBLP-
Google

Fodors-
Zagats

iTunes-
Amazon

Walmart-
Amazon

HoloClean 54.5 51.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
HoloDetect 99.1 94.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
IPM N/A N/A 96.5 77.2 N/A N/A N/A N/A N/A N/A N/A N/A
SMAT N/A N/A N/A N/A 38.5 N/A N/A N/A N/A N/A N/A N/A
Magellan N/A N/A N/A N/A N/A 49.1 78.8 98.4 92.3 100 91.2 71.9
Ditto N/A N/A N/A N/A N/A 75.6 94.4 99.0 95.6 100 97.1 86.8
Unicorn N/A N/A N/A N/A N/A N/A 90.3 N/A 95.6 100 96.4 86.9
Unicorn ++ N/A N/A N/A N/A N/A N/A 87.5 N/A 96.2 97.7 98.2 86.9
Table-GPT N/A N/A N/A N/A N/A 70.1 96.3 93.8 92.4 97.7 92.9 82.4
GPT-3 99.1 97.8 98.5 88.4 45.2 63.5 100 96.6 83.8 100 98.2 87.0
GPT-3.5 92.0 90.7 98.5 94.2 57.1 66.5 96.3 94.9 76.1 100 96.4 86.2
GPT-4 92.0 90.7 100 97.7 66.7 74.2 100 97.4 91.9 100 100 90.3
GPT-4o 83.6 44.8 100 90.7 6.6 70.9 90.3 95.9 90.4 93.6 98.2 79.2

Table 2: Ablation study, measured in accuracy (%) for data imputation and F1 score (%) for the other tasks, using GPT-3.5. ZS-T
denotes zero-shot task specification. FS denotes few-shots. B denotes batch prompting. ZS-R denotes zero-shot reasoning.

Error Detection Data Imputation Schema
Matching

Entity Matching

Components Adult Hospital Buy Restaurant Synthea Amazon-
Google

Beer DBLP-
ACM

DBLP-
Google

Fodors-
Zagats

iTunes-
Amazon

Walmart-
Amazon

ZS-T 25.9 18.4 86.2 81.4 18.2 54.7 83.3 94.7 58.5 92.7 80.0 81.5
ZS-T+B 37.8 19.1 83.1 81.4 17.4 60.1 78.3 94.9 59.6 92.7 83.9 81.6
ZS-T+B+ZS-R 46.3 26.2 89.2 65.1 5.9 45.8 50.0 72.6 47.6 92.7 82.0 60.7
ZS-T+FS 59.3 59.4 96.9 90.7 57.1 66.3 96.3 97.0 74.6 100 96.4 85.6
ZS-T+FS+B 58.1 56.1 96.9 86.2 53.3 66.5 96.3 96.2 76.1 97.8 94.7 86.2
ZS-T+FS+B+ZS-R 92.0 90.7 98.5 94.2 61.5 60.1 92.3 95.7 60.0 97.8 96.4 84.0

features, while the restaurant’s name and type (Asian, Italian, etc.)
are irrelevant. Therefore, users may choose to use only the phone
number and street name as attributes in the above prompt.

3.5 Batch Prompting
Considering the significant token and time cost of LLMs, batch
prompting [3] was proposed to enable the LLM to run inference in
batches, rather than processing one sample at a time. To implement
this technique, multiple data instances are presented in a single
prompt, and the LLM is instructed to answer all of them. For ex-
ample, for DI, the prompt is the same as the first part of few-shot
prompting (i.e., the part before Assistant:). We propose two modes
for batching: the first is random batching, where data instances
are randomly assigned to a batch; and the second is cluster batch-
ing, where we perform clustering on the dataset, and then random
batching is conducted within each cluster.

4 EXPERIMENTS
4.1 Experimental Setup
We use the datasets evaluated in [12]. We evaluate three LLMs:
GPT-3.5-turbo-0301 (referred to as GPT-3.5), GPT-4-0314 (referred
to as GPT-4), and GPT-4o-2024-05-13 (referred to as GPT-4o). The
temperature parameter for these models is set at 0.35. For SM tasks,

we use 3 few-shot examples, and for other tasks, we use 10. The
default batch prompting method is random batching. The batch size
ranges for GPT-3.5, GPT-4, and GPT-4o are [10, 20], [10, 15], and [5,
10], respectively. As baselines, we employ GPT-3 (text-davinci-002)
with the best settings [12] for all four tasks, and HoloClean [15]
and HoloDetect [6] for ED, IPM [11] for DI, SMAT [19] for SM,
and Magellan [8], Ditto [10], Unicorn/Unicorn ++ [17], and Table-
GPT [9] for EM. As these baselines have been evaluated in [12], we
use these results as a reference. Open LLMs like LLaMA are not
considered here, as they are generally less competitive than close
models [4].

4.2 Experimental Results
Performance comparisons are presented in Table 4.2. GPT-4 sur-
passes GPT-3 on three out of the four tasks: DI, SM, and EM. For DI
and SM, and achieves superior performance than previous methods,
particularly for SM. Moreover, GPT-4 emerges as the victor on 4
out of 7 datasets for EM. GPT-3.5 also presents strong competition,
outperforming GPT-3 on DI and SM. GPT-4o is generally on a par
with GPT-3.5 on DI and EM, but turns out to be mediocre on ED and
SM, showcasing inconsistent performance. Table-GPT, as GPT-3.5
fine-tuned for processing tabular input, roughly exhibits reduced
performance from GPT-3.5 on EM. Consequently, we recommend
users to either employ larger models or fine-tune its parameters for



Table 3: Batch size evaluation, measured on the Adult dataset
for ED, using GPT-3.5 without few-shot prompting.

Batch size F1 score (%) Tokens (M) Cost ($) Time (hrs)
1 44.0 4.07 8.14 4.76
2 45.9 2.38 4.75 2.70
4 45.1 1.87 3.74 2.06
8 45.0 1.61 3.21 1.82
15 46.3 1.49 2.99 1.60

these tasks, and avoid the model with more HCI focus (i.e., GPT-
4o) for the time being. We also observe Ditto, a non-GPT method,
excelling on a few datasets. For ED, our performance is not as com-
petitive as the GPT-3 results reported in [12]. The prompts used
for GPT-3 in [12] are not directly applicable for GPT-3.5 and GPT-4.
We believe the results of ED warrant further investigation, such as
a case-by-case comparison.

To assess the effectiveness of our prompting strategy, we test
GPT-3.5, as it is more cost-effective and faster than GPT-4, while de-
livering notable performance in the above evaluations. This makes it
a more desirable choice for applications dealing with large datasets.
The results are reported in Table 2. We start with GPT-3.5 prompted
with only task specification (i.e., without reasoning, as shown in the
first line of the prompt in Section 3.1) through zero-shot prompting.
The result quality for ED and SM is very low, and roughly below
90% for DI and EM. The inclusion of few-shot examples improves
all performances, exceeding 50% for ED and SM and reaching ap-
proximately 90% for the others. Batch prompting generally has a
slight negative effect on result quality. With zero-shot reasoning,
the performances of ED, DI, and SM are further improved, with ED
over 90% and SM over 60%. However, there is little improvement
observed for EM, potentially due to GPT-3.5’s reasoning limitations
and the lack of adequate input information for reasoning.

Feature selection proves useful for GPT-4. For instance, for entity
matching on the Beer dataset without few-shot prompting, the
F1 scores before and after feature selection are 74.1% and 90.3%,
respectively. In terms of batch prompting, we compare random
batching with cluster batching, where data instances are clustered
using k-means over their Sentence-BERT [14] embeddings. For
entity matching on the Amazon-Google dataset without few-shot
prompting, F1 scores increase from 45.8% to 50.6% when switching
from random to cluster batching, illustrating the effectiveness of
cluster batching.

We explore the impact of batch size and present the results in
Table 3. As batch size augments, there is a significant reduction
in the number of tokens, dropping from over 4M without batch

prompting to 1.5M with a batch size of 15. Both the cost and pro-
cessing time follow similar trends, decreasing from $8.14 to $2.99
and from 4.8 hours to 1.6 hours, respectively. Concurrently, the F1
score experiences minor fluctuations, even displaying an increase
when the batch size is set to 15. This is because GPT-3.5 can identify
commonalities in questions and generate consistent solutions for all
data instances in the batch, thereby enhancing overall performance.
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