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ABSTRACT
Given a relational database (RDB), how can we predict missing

column values in some target table of interest? Although RDBs

store vast amounts of rich, informative data spread across intercon-

nected tables, the progress of predictive machine learning models

as applied to such tasks arguably falls well behind advances in other

domains such as computer vision or natural language processing.

This deficit stems, at least in part, from the lack of established/public

RDB benchmarks as needed for training and evaluation purposes.

As a result, related model development thus far often defaults to

tabular approaches trained on ubiquitous single-table benchmarks,

or on the relational side, graph-based alternatives such as GNNs ap-

plied to a completely different set of graph datasets devoid of tabular

characteristics. To more precisely target RDBs lying at the nexus of

these two complementary regimes, we explore a broad class of base-

line models predicated on: (i) converting multi-table datasets into

graphs using various strategies equippedwith efficient subsampling,

while preserving tabular characteristics; and (ii) trainable models

with well-matched inductive biases that output predictions based

on these input subgraphs. Then, to address the dearth of suitable

public benchmarks and reduce siloed comparisons, we assemble a

diverse collection of (i) large-scale RDB datasets and (ii) coincident

predictive tasks. From a delivery standpoint, we operationalize

the above four dimensions (4D) of exploration within a unified,

∗
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scalable open-source toolbox called 4DBInfer. We conclude by pre-

senting evaluations using 4DBInfer, the results of which highlight

the importance of considering each such dimension in the design

of RDB predictive models, as well as the limitations of more naive

approaches such as simply joining adjacent tables. Our source code

is released at https://github.com/awslabs/multi-table-benchmark.
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1 INTRODUCTION
Relational databases (RDBs) can be viewed as storing a collection

of interrelated data spread across multiple linked tables. Of vast

and steadily growing importance, the market for RDB management

systems alone is expected to exceed $133 billion USD by 2028 [56].

Even so, while the machine learning community has devoted con-

siderable attention to predictive tasks involving single tables, or
so-called tabular modeling tasks [21, 49, 58], thus far efforts to

widen the scope to handle multiple tables and RDBs still lags be-

hind, despite the seemingly enormous potential of doing so. With

respect to the latter, in many real-world scenarios critical features

needed for accurately modeling a given quantity of interest are not

constrained to a single table [9, 14], nor can be easily flattened into

a single table via reliable/obvious feature engineering [15].

This disconnect between commercial opportunity and academic

research focus can, at least in large part, be traced back to one trans-

parent culprit: Unlike widely-studied computer vision [16], natural

language processing [67], tabular [28], and graph [35] domains,

established benchmarks for evaluating predictive ML models of

RDB data are much less prevalent. This reality is an unsurprising

consequence of privacy concerns and the typical storage of RDBs

on servers with heavily restrictive access and/or licensing protec-

tions. With few exceptions (that will be discussed in later sections),

relevant model development is instead predicated on surrogate

benchmarks that branch as follows.

Along the first branch, sophisticated models that explicitly

account for relational information are often framed as graph

learning problems, addressable by graph neural networks (GNNs)

[6, 29, 32, 37, 42, 45, 57, 66] or their precursors [78, 80, 81], and

evaluated specifically on graph benchmarks [35, 43, 51]. The lim-

itation here though is that performance is conditional on a fixed,

pre-specified graph and attendant node/edge features intrinsic to

the benchmark, not an actual RDB or native multi-table format.

Hence the inductive biases that might otherwise lead to optimal

performance on the original data can be partially masked by what-

ever process was used to produce the provided graphs and features.

As for the second branch, emphasis is placed on tabular model evalu-

ations that preserve the original format of single table data, possibly

with augmentations collected from auxiliary tables. But here feature

engineering and table flattening are typically prioritized over ex-

ploiting rich network effects as with GNNs [9, 14, 47, 48]. Critically

though, currently-available head-to-head comparisons involving

diverse candidate approaches representative of both branches on

un-filtered RDB/multi-table data are insufficient for drawing clear-

cut conclusions regarding which might be preferable and under

what particular circumstances.

To address the aforementioned limitations and help advance

predictive modeling over RDB data, in Section 2 we first introduce

a generic supervised learning formulation across both inductive

and transductive settings covering dynamic RDBs as commonly-

encountered in practice. A given predictive pipeline is then specified

by (i) a sampling/distillation operator which extracts information

most relevant to each target label, followed by (ii) a trainable pre-

diction model. In Section 3 we present a specific design space for

these two components. For the former, we adopt a graph-centric

perspective whereby distillation is achieved (either implicitly or

explicitly) via graphs and sampled subgraphs extracted from RDBs.

Meanwhile, for the latter we incorporate trainable architectures

that represent strong exemplars drawn from both tabular and graph
ML domains. We emphasize here that until more extensive bench-

marking has been conducted, it is advisable not to prematurely

exclude candidates from either domain, or hybrid combinations

thereof. In this regard, Section 4 introduces a new suite of RDB

benchmarks along with discussion of the comprehensive desiderata

which leads to them. These include multiple diversity/coverage con-

siderations across both (i) datasets and (ii) predictive tasks, while

also resolving limitations of existing alternatives. Our 4DBInfer

toolbox for pairing a so-called 2D design space of baseline models

from Section 3 and the 2D benchmark coverage from Section 4

within a neutral combined 4D evaluation setting is introduced in

Section 5. And finally, Section 6 culminates with representative

experiments conducted using 4DBInfer.

In tracing these endeavors, our paper consolidates the following

contributions:

• 2D Space of Baselines: On the modeling side we describe a 2D
design space with considerable variation in (i) graph construc-

tion/sampling operators and (ii) trainable predictor designs.

The latter covers popular choices drawn from GNN and tabular

domains, representative of both early and late feature fusion

strategies. This diversity safeguards against siloed comparisons

between pipelines of only a single genre, e.g., tabular, GNNs.

• 2D Space of Benchmarks:On the data side, we introduce a 2D
suite of RDB benchmarking (i) datasets and (ii) tasks that are

devoid of potentially lossy or confounding pre-processing that

might otherwise skew performance in favor of one model class

or another. These benchmarks also vary across key dimensions

of scale (e.g., up to 2B RDB rows), source domain, RDB schema,

and temporal structure.

• 4DBInfer Toolbox: We operationalize the above via a unified
and scalable open-source toolbox called 4DBInfer that facilitates

direct head-to-head empirical comparisons across each dimen-

sion of baseline model and benchmarking task (and is readily

extensible to accommodate new additions of either). Figure 1

depicts the combined 4D exploration space of 4DBInfer, along

with comparisons relative to existing RDB, tabular, and graph

benchmarking work.

• Empirical Support: Experiments using 4DBInfer highlight

the relevance of each of the proposed four dimensions of ex-

ploration to the design of successful RDB predictive models, as

well as the limitations of more naive approaches such as simply

joining adjacent tables.

2 PREDICTIVE MODELING ON RDBS
2.1 Relational Database Preliminaries
An RDB D [25] can be viewed as a set of 𝐾 tables denoted as

D := {𝑻𝑘 }𝐾
𝑘=1

, where 𝑻𝑘 refers to the 𝑘-th constituent table defined
by a particular entity type. Each row of a table then represents an

instance of the corresponding entity type (e.g., a user), while the

columns contain relevant features of each such instance (e.g., user

profile information). Such features are typically heterogeneous

and may include real values, integers, categorical variables, text



“4D" Properties OpenML OGB HGB TGB RDBench CRLR RelBench 4DBInfer

[64] [34, 36] [51] [38] [79] [54] [23] (Ours)

1) Datasets
Use raw data ✓ ✓ ✓ ✓ ✓
Multiple Tables ✓ ✓ ✓ ✓ ✓ ✓ ✓
Heterogeneous Features ✓ ✓ ✓ ✓
Billion-scale ✓ ✓

2) Tasks
Transductive ✓ ✓ ✓ ✓
Inductive ✓ ✓ ✓ ✓ ✓
Temporal ✓ ✓ ✓ ✓ ✓
Entity Attr. Prediction ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Relationship Attr. Pred. ✓ ✓ ✓
Key (or Link) Prediction ✓ ✓ ✓ ✓

3) Graphs
Diverse extractions ✓

4) Predictive Models
4+ GNNs ✓ ✓ ✓ ✓ ✓
4+ Tabular ML ✓ Partial ✓

Figure 1: 4DBInfer exploration dimensions. Unlike prior benchmarking efforts (table columns on right), 4DBInfer considers an
evaluation space with diversity across the 4D Cartesian product of (i) datasets, (ii) tasks, (iii) graph extractors, and (iv) predictive
baselines. See Sections 3 and 4 (and in particular Section 4.3) for further details of table properties and assumptions.

Figure 2: 4DBInfer overview. Left: First a (i) RDB dataset and (ii) task (i.e., predictive target here) are selected from among
proposed benchmarks. Middle: Then a (iii) graph extractor/sampling operator is chosen which converts the RDB and task
into subgraph chunks (middle). Right: Lastly a (iv) predictive model ingests these chunks, either through early or late feature
fusion, to produce an estimate of the target values (right).

snippets, or time stamps among other things. We adopt 𝑻𝑘
𝑖:
and

𝑻𝑘
:𝑗
to reference the 𝑖-the row and 𝑗-th column of 𝑻𝑘 respectively.

What establishes D as a relational database, as opposed to merely

a collection of tables, is that certain table columns are designated

as either primary keys (PKs) or foreign keys (FKs). A column 𝑻𝑘
:𝑗

serves as a PK when each element is a unique index referencing a

row of 𝑻𝑘 , such as a user ID for example. In contrast, 𝑻𝑘
:𝑗
is defined

as a FK column if each 𝑻𝑘
𝑖 𝑗

corresponds with a unique PK value

referencing a row in another table 𝑻𝑘
′
(generally 𝑘′ ≠ 𝑘 , although

this need not strictly be the case), with the only restriction being

that all such indices within a given FK column must point to rows

within the same table. In this way, the domain of any FK column

is given by the corresponding PK column it references. Please see

l.h.s. of Figure 2 for a simple RDB example.

2.2 Making Predictions over Dynamic RDBs
Generally speaking, RDBs are dynamic, with information regularly

being added to or removed from D. Hence if we are to precisely

define a predictive task involving an RDB, and particularly an induc-

tive task, it is critical that we specify the RDB state during which a

given prediction is to occur. For this reason, we refine our original

RDB definition as D(𝑠) := {𝑻𝑘 (𝑠)}𝐾
𝑘=1

, where 𝑠 ∈ S defines the

RDB state drawn from some set S. Note that S could simply re-

flect counting indices (versions) such as the set of natural numbers;

importantly though, each 𝑠 ∈ S need not necessarily correspond

with physical/real-world time per se, even if in some cases it may

be convenient to assume so. This then leads to the following core

objective:

Problem Statement: Using all relevant information avail-
able in D(𝑠), predict an unknown RDB quantity of interest
𝑻𝑘
𝑖 𝑗
(𝑠) as uniquely specified by the tuple {𝑠, 𝑘, 𝑖, 𝑗}, where 𝑠

determines the state, 𝑘 the table, and {𝑖, 𝑗} the table cell we
wish to estimate.

To illustrate, the unknown 𝑻𝑘
𝑖 𝑗
(𝑠) is represented by ‘?’ on the

l.h.s. of Figure 2. Ideally, we would like to closely approximate the



distribution 𝑝

(
𝑻𝑘
𝑖 𝑗
(𝑠) | D(𝑠) \ 𝑻𝑘

𝑖 𝑗
(𝑠)

)
, meaning all other informa-

tion in the RDB is fair game as conditioning variables governing our

prediction at state 𝑠 of missing value 𝑻𝑘
𝑖 𝑗
(𝑠). Of course in practice

it is neither feasible nor necessary to condition on the entire RDB
given limited computational resources and the likely irrelevance of

much of the stored data w.r.t. 𝑻𝑘
𝑖 𝑗
(𝑠). Hence our revised objective is

to incorporate a sampling operator Φ defined such that

𝑝

(
𝑻𝑘𝑖 𝑗 (𝑠) | Φ

[
D(𝑠) \ 𝑻𝑘𝑖 𝑗 (𝑠)

] )
(1)

≈ 𝑝

(
𝑻𝑘𝑖 𝑗 (𝑠) | D(𝑠) \ 𝑻𝑘𝑖 𝑗 (𝑠)

)
,

where Φ
[
D(𝑠) \ 𝑻𝑘

𝑖 𝑗
(𝑠)

]
represents a distillation of appreciable

information in the RDB relevant to 𝑻𝑘
𝑖 𝑗
(𝑠). As a simple illustrative

example, if

Φ
[
D(𝑠) \ 𝑻𝑘𝑖 𝑗 (𝑠)

]
= 𝑻𝑘𝑖: (𝑠) \ 𝑻

𝑘
𝑖 𝑗 (𝑠), (2)

then all information inD(𝑠) excluding the features in row 𝑖 of table

𝑘 are ignored when predicting 𝑻𝑘
𝑖 𝑗
(𝑠) and we recover a canonical

tabular prediction task involving just a single table [21, 49, 58] More

broadly though, Φmay be defined to select other rows of 𝑻𝑘 (𝑠) (i.e.,
row 𝑖′ ≠ 𝑖 as used in recent cross-row tabular predictive models [20,

46, 60]), as well as information from other tables 𝑻𝑘
′ (𝑠) (with𝑘′ ≠ 𝑘)

that are linked to 𝑻𝑘 (𝑠) through one or more FK relationships. Even

other values in column 𝑻𝑘
:𝑗
(𝑠) can be incorporated when available,

noting that a special case of this scenario can be used to rederive

trainable variants of label propagation predictors [71].

2.3 High-Level Training and Inference Specs
We now describe training and inference in general terms under

an inductive setup; the transductive case will trivially follow as a

special case discussed below. We assume target table 𝑘 and target

column 𝑗 are fixed to define a given predictive task. As such, each

training instance is specified by only the tuple {𝑠, 𝑖}, noting that

target table row 𝑖 will often be a function of 𝑠 by design, e.g., as 𝑠 in-

crements forward, additional rows with missing values for column

𝑗 may be added to 𝑻𝑘 (𝑠). Let S𝑡𝑟 denote the set of states which
have known training labels, and 𝜓𝑡𝑟 (𝑠) the corresponding set of

specific indices with labels for each 𝑠 ∈ S𝑡𝑟 . Then for a given task

defined by 𝑘 and 𝑗 , along with a corresponding sampling operator

Φ, we seek to minimize the negative log-likelihood objective∑︁
𝑠∈S𝑡𝑟

∑︁
𝑖∈𝜓𝑡𝑟 (𝑠 )

− log𝑝

(
𝑻𝑘𝑖 𝑗 (𝑠) | Φ

[
D(𝑠) \ 𝑻𝑘𝑖 𝑗 (𝑠)

]
;𝜃

)
(3)

with respect to parameters 𝜃 that define the predictive distribution,

e.g., a model of the conditional mean for regression problems, or

logits for classification tasks, etc. The implicit assumption here is

that, when conditioned onΦ
[
D(𝑠) \ 𝑻𝑘

𝑖 𝑗
(𝑠)

]
, each 𝑻𝑘

𝑖 𝑗
(𝑠) is roughly

independent of one another for all {{𝑠, 𝑖} : 𝑖 ∈ 𝜓𝑡𝑟 (𝑠), 𝑠 ∈ S𝑡𝑟 }; this
implicit assumption forms the basis of empirical risk minimization

[65].
1
However, it need not be the case that individual rows of 𝑻𝑘 (𝑠)

are independent of one another.

1
There are alternatives to empirical risk minimization (ERM) for making predictions

on RDBs, e.g., based on first-order logic [15, 27, 75]; however, for scalable, data-driven

ML or deep learning solutions, ERM is a well-placed assumption.

Given some
ˆ𝜃 obtained by minimizing (3), at test time we are

presented with new tuples {{𝑠, 𝑖} : 𝑖 ∈ 𝜓𝑡𝑒 (𝑠), 𝑠 ∈ S𝑡𝑒 }, from which

we can compute 𝑝

(
𝑻𝑘
𝑖 𝑗
(𝑠) | Φ

[
D(𝑠) \ 𝑻𝑘

𝑖 𝑗
(𝑠)

]
;

ˆ𝜃

)
that ideally ap-

proximates the true distribution 𝑝

(
𝑻𝑘
𝑖 𝑗
(𝑠) | Φ

[
D(𝑠) \ 𝑻𝑘

𝑖 𝑗
(𝑠)

] )
. We

remark that a transductive reduction of the above procedure nat-

urally emerges when 𝑠 is fixed across both training and testing.

More generally though, as 𝑠 increments D(𝑠) may undergo sig-

nificant changes, such as new rows appended to 𝑻𝑘 (𝑠) (e.g., the
‘Purchase’ table in Figure 2), new labels/values added to the target

column 𝑻𝑘
:𝑗
(𝑠), as well as arbitrary changes to other tables 𝑻𝑘

′ (𝑠)
with 𝑘′ ≠ 𝑘 .

3 DESIGN SPACE OF (GRAPH-CENTRIC)
BASELINE MODELS

The general inductive learning framework from the previous section

relies on two complementary components: (i) a sampling operator

Φ, and (ii) a parameterized predictive distribution as expressed

in (3). Collectively, these amount to the first so-called 2D of our

proposed 4DBInfer. For both scalability and conceptual reasons,

we design the former to operate on graphs that can extracted from

RDBs through multiple distinct strategies as summarized in Section

3.1. Subsequently, we will introduce the details of Φ itself in Section

3.2, followed by choices for predictive architectures in Section 3.3.

3.1 Converting RDBs to Graphs
A heterogeneous graph G = {V, E} [63] is defined by sets of

node types 𝑉 and edge types 𝐸 such that V =
⋃
𝑣∈𝑉 V𝑣

and

E =
⋃
𝑒∈𝐸 E𝑒 , whereV𝑣

references a set of |V𝑣 | nodes of type 𝑣 ,
while E𝑒 indicates a set of |E𝑒 | edges of type 𝑒 . Both nodes and

edges can have associated features. Additionally, any heterogeneous

graph can be generalized to depend on a state variable 𝑠 as G(𝑠)
analogous toD(𝑠). The goal herein then becomes the establishment

of some procedure or mapping A∗
such that G(𝑠) = A∗ [(D(𝑠)]

for any given RDB of interest.

Row2Node. Perhaps the most natural and intuitive way to in-

stantiate A∗
is to simply treat each RDB row as a node, each table

as a node type, and each FK-PK pair as a directed edge. Additionally,

non-FK/PK column values are converted to node features assigned

to the respective rows. Originally proposed in [15] with ongoing

application by others [23, 77, 79], we refer to this approach as

Row2Node; see Appendix G for further details.

Row2N/E. Importantly though, unlike prior work we do not
limit 4DBInfer to a single selection for A∗

. The motivation for

considering alternatives is straightforward: Even if we believe that
graphs are a sensible route for pre-processing RDB data, we should
not prematurely commit to only one graph extraction procedure and
the coincident downstream inductive biases that will inevitably be
introduced. To this end, as an alternative to Row2Node, we may

relax the restriction that every row must be exclusively converted

to a node. Instead, rows drawn from tables with more than one FK

column can be selectively treated as typed edges, with the remaining

non-FK columns designated as edge features. The intuition here is

simply that tables with multiple FKs can be viewed as though they

were natively a tabular representation of edges. We denote this



variant of A∗
as Row2N/E, with full details and analysis deferred to

Appendix G.

Further Extensions. And finally, we consider an extension of

either Row2Node or Row2N/E designed to produce additional edges

beyond those based on known FK-PK pairs. Motivated by practical

use cases (as reflected in the benchmarks we will introduce later),

the high-level idea is to introduce dummy tables with PK columns

matched with select columns in original RDB tables. The latter are

now treated as an additional set of pseudo FKs, which pair with

dummy table PKs to form new typed edges/joins; notably, these

may either be intra- or inter-table joins. Again, please see Appendix

G for details of this approach and its advantages, which to the best

of our knowledge, has not been addressed in prior work.

3.2 Graph-based Sampling Operator Φ
In principle, the sampling operator Φ need not be explicitly predi-

cated on an extracted graph. However, provided we do not restrict

ourselves to a particular fixed graph upfront, we are not beholden
to any one graph-specific inductive bias. In this way (with some

abuse of notation) we instantiate Φ as

Φ
[
D(𝑠) \ 𝑻𝑘𝑖 𝑗 (𝑠)

]
≡ Φ

[
A∗ [D(𝑠)] \ 𝑻𝑘𝑖 𝑗 (𝑠)

]
= Φ

[
G(𝑠) \ 𝑻𝑘𝑖 𝑗 (𝑠)

]
, (4)

whereA∗
is an RDB-to-graph mapping such as described in Section

3.1 (and Appendix G), G(𝑠) = A∗ [D(𝑠)] represents the extracted
graph, and the exclusion operator ‘\’ now simply removes the node

feature attribute associated with 𝑻𝑘
𝑖 𝑗
(𝑠) from G(𝑠). We may now

select from among the wide variety of scalable graph sampling

methods for finalizing Φ [7, 10, 32, 73, 76, 83] while specifying the

effective receptive field, meaning the number of hops (or tables)

away from the target associatedwith𝑻𝑘
𝑖 𝑗
(𝑠) fromwhich information

is collected. One reasonable choice is to match the receptive field

to the RDB schema width, i.e., the maximal number of PK-FK hops

needed to reach any other table from the target table. Whatever

the choice though, the output of Φ will be a subgraph of G(𝑠)
containing the target node corresponding to row 𝑻𝑘

𝑖:
(𝑠).

Overall, provided we allow for diversity of graph extraction

and sampling, then many classical multi-table data augmentation

methods can be recast in this way. For example, joining a target table

𝑘 with all features from tables that can be reached by a single FK-PK

join can be achieved using single-hop neighbor sampling applied

to G(𝑠). And for one-to-many joins (i.e., many FKs pointing to a

single PK in the target table) it is a common feature engineering

practice to just randomly choose a single element [9]; likewise,

neighbor sampling over graphs can be optionally set to achieve the

equivalent [32].

3.3 Trainable Predictive Architectures
At a high-level, once granted Φ we sub-divide candidate architec-

tures for instantiating the predictive distribution from (3) based on

what can be loosely referred to as early versus late feature fusion.

Late Fusion. In the context of RDB-specific modeling, we re-

serve late fusion to delineate models whereby parameter-free fea-

ture augmentation is adopted to produce a fixed-length, potentially

high-dimensional feature vector associated with each target that is,

only then, used to train a high-capacity base model (with param-

eters 𝜃 ) such as those commonly applied to tabular data.
2
For the

initial feature augmentation step, we lean on the Deep Feature Syn-

thesis (DFS) framework from [41] and our own extensions thereof

for the following reasons:

• DFS is a powerful automated method for generating new fea-

tures for an RDB by recursively combining data from related

tables through aggregation, transformation, etc.

• Although motivated differently, DFS can be re-derived and gen-

eralized as a form of subgraph sampling from Section 3.2, fol-

lowed by concatenated aggregations, as applied to graphs ex-

tracted via Row2Node or Row2Node+;

• Special cases of DFS include commonly-used multi-table aug-

mentation and flattening schemes [22], as when paired with

sampling limited to 1-hop, or more general multi-hop strategies

such as FastProp from the getML package [26];
3

• DFS can be applied with constraints on 𝑠 to avoid label leakage;

• DFS is in principle capable of handling large-scale RDBs. Please

see Appendix D.1 for additional details regarding DFS and our

enhanced implementation.

Then for a given target 𝑻𝑘
𝑖 𝑗
, this so-called late fusion pipeline pro-

duces a fixed-length feature vector 𝒖𝑘
𝑖 𝑗

:=

DFS

[
D(𝑠) \ 𝑻𝑘𝑖 𝑗 (𝑠)

]
≡ Agg

(
Φ
[
G(𝑠) \ 𝑻𝑘𝑖 𝑗 (𝑠)

] )
, (5)

where Agg is an aggregation operator; see Appendix D.1 for specific

choices. And in conjunction with (4), we can subsequently apply

any tabular model to estimate the parameters of

𝑝

(
𝑻𝑘𝑖 𝑗 (𝑠) | Φ

[
D(𝑠) \ 𝑻𝑘𝑖 𝑗 (𝑠)

]
;𝜃

)
(6)

≡ 𝑝

(
𝑻𝑘𝑖 𝑗 (𝑠) | 𝒖

𝑘
𝑖 𝑗 ;𝜃

)
by minimizing (3) over training data. For diversity of tabular base

predictors, including both tree- and deep-learning-based, we adopt

MLP, DeepFM [31], FT-Transformer [30], XGBoost [8], and
AutoGluon (AG) [3, 21], the latter representing a top-performing

AutoML tool that ensembles over multiple constituent models.

Early Fusion. We next adopt early fusion to reference

message-passing GNN-like architectures that produce trainable

low-dimensional node embeddings (at least relative to late fusion)

beginning from the very first model layer. More concretely, for

a heterogeneous graph G (e.g., as extracted from an RDB) these

embeddings can be computed as 𝒉𝑣𝑖,ℓ =

𝑓

( { {(
𝒉𝑣

′
𝑖′,ℓ−1

, 𝑣𝑣 ′
)

: 𝑖′ ∈ N 𝑣𝑣′
𝑖

}
: 𝑣 ′ ∈ N 𝑣

}
,

𝒉𝑣𝑖,ℓ−1
;𝜃

)
,

where 𝒉𝑣𝑖,ℓ denotes the embedding of node 𝑖 of type 𝑣 at GNN layer ℓ .

In this expression,N 𝑣
indicates the set of node types that neighbor

nodes of type 𝑣 , andN 𝑣𝑣′
𝑖

is the set of nodes of type 𝑣 ′ that neighbor
node 𝑖 of type 𝑣 . Moreover, we assume that there is a unique edge

type 𝑒 ≡ 𝑣𝑣 ′ associated with each pair of node types (𝑣, 𝑣 ′), as will
2
This strategy is also sometimes referred to as propositionalization [47, 75].

3
The getML package also advertises other featurization algorithms for RDBs; however,

these are not open-sourced nor published, and details are unavailable.



always be the case for the graphs extracted from RDBs that we focus

on here (note also that the edge type 𝑣𝑣 ′ is includedwithin the inner-
most set definition to differentiate each element within the outer-

most set construction). Meanwhile, 𝑓 is a permutation-invariant

function [74] over sets (with parameters 𝜃 ), acting to aggregate or

fuse information from all neighbors of connected node types at

each layer. At the output layer, the embeddings produced via (7)

can be applied to making node-wise predictions, which translates

into predictions of target values in column 𝑻𝑘
:𝑗
.

For implementing 𝑓 we adopt the popular heterogeneous ar-

chitectures R-GCN [57], R-GAT [6], HGT [37], and R-PNA [13].

Note that we specifically select R-PNA because its core principal

neighbor aggregation (extended to heterogeneous graphs) bears

considerable similarities to DFS aggregators. In all cases the result-

ing output layer embeddings will generally depend on which A∗
is

used for graph construction (see Appendix D.2 for further details).

3.4 Contextualization w.r.t Prior Work
Although not necessarily framed directly as such, recent work

applying predictive ML or deep learning to RDBs can often be

interpreted (implicitly or explicitly) as a particular graph extrac-

tor (A∗
) along with graph-centric sampling (Φ) followed by early

[4, 33, 75, 77] or late fusion [9, 41, 47, 48] per the formulation out-

lined herein.
4
However, there do not as of yet exist systematic

comparisons among different pairings of available components (or

different graph extraction approaches), nor in most cases is there

available code for doing so. In particular, while late fusion-based

models (per our terminology) mostly dominate ML solutions on

RDBs thus far, more recent GNN-based alternatives (from the early

fusion camp) are rarely actually pitted against the strongest incum-

bents, and vice versa.

As a representative example, the recent RDB benchmarking work

from [79] compares GNNs (with graphs from Row2Node) only

against tabular baselines involving single tables and 1-hop table

joins, not more advanced late fusion approaches like DFS. Con-

versely, a strong late fusion approach from getML involving more

sophisticated joins has recently been compared with GNNs [39],

but only against one simple homogeneous GCN architecture [44]

that is far from SOTA.

4 A NEW SUITE OF RDB BENCHMARKS
We now introduce RDB benchmarks that can be applied to eval-

uating the efficacy of candidate predictive models such as those

described in Section 3. However, first we discuss why existing

benchmarks are not sufficient, followed by a more precise defini-

tion of what actually constitutes a benchmark for our purposes. We

conclude this section by describing our selection desiderata and

specific benchmark choices that adhere to them.

4.1 Why New RDB Benchmarks
On the tabular side, there exist countless benchmarks covering ev-

ery conceivable scenario; however, these are predominately single-
table datasets, e.g., widely-used Kaggle data [40]. In contrast, on

4
There also exist feature augmentation methods based on reinforcement learning that

fall outside of our current scope [24, 50]; moreover, scalability and sample-efficiency

could pose challenges for such cases.

the relational side, benchmarks are often predicated on extracted

graphs (often from limited domains such as citation networks) and

pre-processed node features that may have already filtered away

useful information [35, 43, 51]. As such, relative performance of

candidate models is contingent on what information is available

in these graphs and any sub-optimality therein, not actually the

original data source. As a simple representative example, on the

widely-studied Open Graph Benchmark (OGB) [35], many of the

graph datasets were formed from curated citation networks with

fixed text embeddings as node features. In this case, researchers

have recently found that by reverting back to the original data

sources and text features, vastly superior node classification accu-

racy is possible [11]. Hence the original benchmarks were implicitly

imposing an arbitrary constraint relative to the raw data itself, and

the same can apply to imposed graph structure.

As for real-world datasets involving actual multi-table RDB data

in its native form, available public benchmarks are somewhat lim-

ited and narrow in scope. These include RDBench [79], RelBench

[23], and the CTU Prague Relational Learning Repository (CRLR)

[54]. However, as of the time of this submission, RelBench con-

stitutes only two datasets, relies on Row2Node, and presents no

experiments of any kind; see Appendix E for further differences

between RelBench and our work. As for RDBench and CRLR, these

are composed mostly of small datasets, e.g., with less than 1000

labeled instances, which is far surpassed by the size of typical real-

world RDBs (see Section 4.3 below for further details). Additionally,

among the recent model-driven works targeting predictive ML or

deep learning on RDBs [4, 9, 24, 33, 50, 75, 77], there exists no con-

sistent set of diverse data and tasks for empirical comparisons, and

as alluded to previously, for most there is no available software

allowing others to follow suit.

4.2 Definition of an RDB Benchmark
Before presenting our desiderata and dataset/task selections, it is

helpful to first define what constitutes an RDB benchmark herein:

Definition 4.1. We define an RDB benchmark, denoted B, as

B := { {D𝑡𝑟 ,I𝑡𝑟 } , {D𝑣𝑎𝑙 ,I𝑣𝑎𝑙 } , {D𝑡𝑒 ,I𝑡𝑒 } , 𝑗, 𝑘} ,

where D𝑠𝑝𝑙 := {D(𝑠)}𝑠∈S𝑠𝑝𝑙
, (7)

I𝑠𝑝𝑙 :=
{
{𝑖, 𝑠} : 𝑖 ∈ 𝜓𝑠𝑝𝑙 (𝑠), 𝑠 ∈ S𝑠𝑝𝑙

}
for all splits labeled 𝑠𝑝𝑙 ∈ {𝑡𝑟, 𝑣𝑎𝑙, 𝑡𝑒} that reference training,

validation, and testing respectively. For each such split, D𝑠𝑝𝑙 in-

cludes the database contents at every state 𝑠 within the set S𝑠𝑝𝑙 .5
Meanwhile I𝑠𝑝𝑙 contains, for each state 𝑠 all of the indices 𝑖 of rows

containing the target we wish to predict in column 𝑗 of table 𝑘 ,

where𝜓𝑠𝑝𝑙 (𝑠) specifies the set of such indices for each 𝑠 .

By design, we may readily train baseline models via (3) using

{D𝑡𝑟 ,I𝑡𝑟 } and task specification { 𝑗, 𝑘}, while using {D𝑣𝑎𝑙 ,I𝑣𝑎𝑙 } for
hyperparameter tuning and model development, reserving {D𝑡𝑒 ,

I𝑡𝑒 } for final performance evaluations. We also note that Definition

4.1 accommodates both inductive and transductive learning tasks

depending on how D(𝑠), the sets S𝑠𝑝𝑙 , and point-to-set mappings

5
There may be considerable redundancy across 𝑠 that can naturally be exploited for

efficient storage; however, at least conceptionally the notion here is to have access to

all relevant D(𝑠 ) for each split.



𝜓𝑠𝑝𝑙 are defined. Either way, these items are each carefully specified

to avoid label leakages, which otherwise represent a significant risk

when facing the subtleties of real-world RDBs; see Appendix A.5

for a practical case study that exemplifies how label leakages can

unexpectedly occur.

4.3 Benchmark Desiderata and Composition
To increase the chances that strong benchmark performance corre-

lates with strong performance on future real-world application data,

it is important to form each B so as to achieve adequate diversity

or coverage across both (i) datasets and (ii) tasks. With this in mind,

on the dataset side our selection criteria are as follows:

• Availability: Some otherwise promising public multi-table

datasets currently disallow use for research publications [2, 12].

• Large-scale: Real-world RDBs can involve billions of rows.

• Domain diversity: We seek datasets from diverse domains

spanning e-commerce, advertising, social networks, etc.

• Schema diversity: Schema width, # tables, # of rows, etc.

• Temporal: Realistic RDBs tend to vary over time.

Meanwhile, on the task side we have:

• Loss type: Regression, classification, or ranking;
• Learning type: Inductive versus transductive;
• Proximity to real-world : Tasks are chosen to reflect practical

business scenarios.

• Meaningful difficulty: Poorly chosen tasks where informa-

tive features are lacking can lead to meaningless comparisons.

Conversely, tasks involving auxiliary features that are simple

functions of target labels may be trivially easy. In real-world

scenarios, avoiding these extremes may be non-obvious; see

Appendix E for representative case studies.

Based on these desiderata covering our proposed 2D dataset and

task space underpinning 4DBInfer, we have curated a represen-

tative set of RDB benchmarks adhering to Definition 4.1. These

are summarized in Table 1 along with distinguishing characteris-

tic properties, with further details deferred to Appendix A. The

datasets include: AVS [18], Outbrain (OB) [53], Diginetica (DN)
[17], RetailRocket (RR) [84], Amazon Book Reviews (AB) [55],
StackExchange (SE) [61], MAG [59], and Seznam (SZ) [54]. As for
selected tasks on top of these datasets, please again see Table 1 and

Appendix A.

Additionally, general comparisons with existing benchmarks are

presented in Figure 1, where 4DBInfer displays a distinct advantage

in terms of the four overall dimensions we have proposed warrant

coverage. As shown in the figure (r.h.s.), relevant existing bench-

marks include single-table tabular (OpenML [64]), graph (OGB
[34, 36], HGB [51], TGB [38]), and RDB (RDBench [79], CRLR
[54], RelBench [23]). Note that entity attribute and key predic-

tion correspond with node classification and link prediction in the

graph ML literature, respectively. Additionally, we only consider

node classification and link prediction for OGB (including OGB-

LSC [34]), i.e., graph classification is less related to RDB predictive

tasks, and exclude synthetic data from CRLR. For further reference,

Appendix E contains a much broader set of candidate benchmarks

that were excluded from 4DBInfer because of failure to adhere with

one or more of the above selection criteria.

Dataset # Rows Task # Instances Temporal

AVS 350M Retention 160K ✓

OB 2B CTR 87K ✓

DN 3.7M

CTR 120K ✓

Purchase 177K ✓

RR 23M CVR 100K ✓

AB 16M

Churn 1.3M ✓

Rating 100K ✓

Purchase 1.1M ✓

SE 6.1M

Churn 337K ✓

Popularity 386K ✓

MAG 23M

Venue 736K

Citation 1.3M

SZ 2.7M

Charge 554K ✓

Prepay 1.4M ✓

Table 1: Properties of 4DBInfer datasets. CTR = Click-through-rate
prediction, CVR = Conversion rate prediction. Comprehensive task
details are listed in Appendix A.

5 BENCHMARK & BASELINE DELIVERY
To facilitate reproducible empirical comparisons using our proposed

benchmarks from Section 4 across the baselines from Section 3

(as well as future/improved predictive models informed by initial

results), we instantiate 4DBInfer as a unified, scalable open-sourced

Python package.
6
This package offers a no-code user experience

to minimize the effort of experimenting with various baselines

over built-in or customized RDB datasets. This is achieved via a

composable and modularized design whereby each critical data

processing and model training step can be launched independently

or combined in arbitrary order. Moreover, adding a new RDB dataset

simply requires users to describe its metadata and the location to

download the tables while the pipeline will automate the rest.

As for the critical step of graph sampling, 4DBInfer implements

Φ using the GraphBolt open-source APIs from the Deep Graph

Library [68], which facilitates sampling over graphs with billions

of nodes, which is roughly tantamount to RDBs with billions rows.

Our 4DBInfer toolbox also provides an enhanced implementation of

the DFS algorithm to facilitate the large-scale datasets in our bench-

mark suite. Specifically, the existing open-source implementation

FeatureTools [22] can only leverage a single-thread for cross-table

aggregation, which can take weeks on some of our datasets. We

substitute its execution backend with an SQL-based engine, which

translates the feature metadata into SQLs for execution. The result-

ing solution shortens the DFS computation time to only several

hours. See Appendix F for quantitative metrics.

6
https://github.com/awslabs/multi-table-benchmark

https://github.com/awslabs/multi-table-benchmark


6 EXPERIMENTS
We now apply our 4DBInfer toolbox to explore performance across

the proposed 4D evaluation space defined by benchmarks (datasets

and tasks) and baselines (graph extractors/samplers and base predic-

tors) applied to them. We conduct standard feature preprocessing

for all experiments such as whitening numeric values, imputing

missing entries, embedding text and date/time fields, etc. Impor-

tantly, to respect the dynamic evolution of RDB datasets, we em-

ploy temporal graph sampling, which ensures that only informa-

tion about preceding events are collected for making predictions

(i.e., only information available at RDB state 𝑠 during which the

prediction is being made). All results are collected using the best

early-stopping model w.r.t. the validation splits to avoid overfitting.

As for baseline models, we explore early feature fusion (DFS-

based, with join-path set to reach the farthest RDB tables, i.e., the

schema width) and late feature fusion (GNN-based) as discussed

in Section 3.3. For the latter, we evaluate the impact of graphs

extracted via either Row2Node (R2N) or Row2N/E (R2N/E). Where

appropriate we also consider including dummy tables; see Appendix

B.1. Furthermore, to better calibrate w.r.t. widely-used alternatives,

we include comparisons with two additional baselines:

• Single: Ignore all other tables in an RDB except the target table

of interest and apply classical tabular models.

• Join: Collect information from tables adjacent to the target

table in the schema graph, and then apply tabular models to the

resulting feature-augmented table (analogous to a simpliefed

form of 1-hop DFS).

6.1 Main Results
Table 2 displays ourmain results spanning both the space of baseline

models (rows) and benchmarks (columns). While there is consider-

able detail and nuance associated with these performance numbers,

several key points are worth emphasizing as follows:

(a) Complex vs simple comparisons. More complex DFS-based

and GNN-based models usually outperform both the single-

table and simple join models, indicating that relevant predictive

information exists across a wider RDB receptive field (i.e., be-

yond adjacent tables). These results also highlight the need to

consider diverse, relatively large-scale datasets, as prior work

[79] involving much smaller scales has shown that simple joins

can outperform GNNs.

(b) Early vs late feature fusion. Early feature fusion as instan-

tiated via GNNs is generally preferable to late fusion through

DFS-based models. That being said, DFS nonetheless remains a

strong competitor on multiple benchmarks, particularly AVS-

Retention, DN-CTR, and SE-Popularity. Moreover, because of

its lean design relative to GNNs, late fusion may be especially

favorable in low resource environments even if the accuracy is

not necessarily superior.

(c) Graph extraction method matters. Among the 12 cases

where GNNs perform well, 4 (OB-CTR, AB-Purchase, MAG-

Venue, MAG-Cite) have strong bias towards Row2N/E while

3 significantly favor Row2Node (DN-CTR, AB-Churn, SE-

Popularity). Hence further exploration along the graph extrac-

tion dimension is warranted.

(d) Task specific dependencies. GNNs are significantly prefer-

able for predicting foreign keys, which is analogous to link

prediction tasks in the graph ML literature. The latter typically

benefits from more complex structural signals such as common

neighbors, for which GNNs are arguably more equipped to

exploit.

Summary. In one way or another, all of the points above high-
light the value of considering all four dimensions of our proposed 4D
exploration space, namely, the potential consequences of variability

across dataset (a,b,c), task (d), graph extractor (c), and base pre-
dictor (a,b,d). Even so, our preliminary comparisons so-obtained

crown no unequivocal front-runner across all scenarios, showcas-

ing the need for such benchmarking on realistic RDB tasks in the

first place. And quite plausibly, high-performant solutions may ac-

tually lie at the boundary between tabular and graph ML worlds.

Either way, reliably establishing such trends hinges on native RDB

evaluations that do not (to the extent possible) a priori favor one

approach over another, e.g., results conditional on only one specific

pre-processed graph or feature engineering technique, etc.

6.2 Ablations
We conclude our empirical study by summarizing various ablations,

with full descriptions deferred to Appendix B.

• Stronger GNN model. We examine the extent to which more

recent GNN architectures might further boost performance. For

this purpose, we conduct experiments using neural common

neighbors (NCN) [69], a powerful architecture specifically tar-

geting link prediction. As detailed in Appendix B.2, on 7 of 8

benchmarks related to key or relationship attribute prediction,

NCN improves upon all of the baselines in Table 2.

• Use of dummy tables. In Section 3.1 we described how the

strategic use of dummy tables can lead to extracted graphs

with additional inter- or intra-table edges. Appendix B.1 com-

pares across identical settings with and without the use of such

dummy tables; in many cases there is a significant performance

impact, e.g., for R-GCNmodels using Row2Node on AVS-Retent

the AUC drops from 0.5653 to 0.4761 without dummy tables (a

similar drop also occurs when using Row2N/E).

• Label propagation. Finally, as alluded to in Section 2.2, it is

possible to handle trainable generalizations of label propagation

using the conceptual framework that underpins 4DBInfer. We

explore this possibility in Appendix B.3, demonstrating that

the judicious use of observable labels can positively influence

performance by significant margins, e.g., without such use of

labels the AUC can drop by over 0.10 on the OB-CTR task.

7 CONCLUSION
In this work we have introduced 4DBInfer, a flexible open-source

tool designed to explore predictive modeling on RDBs along four

influential dimensions, namely, (1) dataset, (2) task, (3) graph extrac-

tion, and (4) base predictive model. Moreover, we have empirically

verified the relevance of these dimensions and the value of com-

paring strong models from both tabular and graph ML camps in a

neutral setting.



Dataset AVS OB DN RR AB SE MAG SZ

Task Retent. CTR CTR Purch. CVR Churn Rating Purch. Churn Popul. Venue Cite Charge Prepay

Prediction Type RA RA RA FK RA EA RA FK EA EA EA FK EA EA

Evaluation metric AUC↑ AUC↑ AUC↑ MRR↑ AUC↑ AUC↑ RMSE↓ MRR↑ AUC↑ AUC↑ Acc.↑ MRR↑ Acc.↑ Acc.↑
Induct. or Trans. Ind. Ind. Ind. Ind. Ind. Ind. Ind. Ind. Ind. Ind. Trans. Trans. Ind. Ind.

Single

MLP 0.5300 N/A N/A N/A N/A 0.5000 N/A N/A 0.5000 0.5079 0.2686 N/A 0.4375 0.5314

DeepFM 0.5217 N/A N/A N/A N/A 0.5000 N/A N/A 0.4964 0.5078 N/A N/A 0.4242 0.5294

FT-Trans 0.5013 N/A N/A N/A N/A 0.5000 N/A N/A 0.4998 0.5124 0.2370 N/A 0.4367 0.5275

XGB 0.5033 N/A N/A N/A N/A 0.5000 N/A N/A 0.5084 0.4968 0.2176 N/A 0.4483 0.5285

AG 0.5350 N/A N/A N/A N/A 0.5000 N/A N/A 0.5000 0.5081 0.2547 N/A 0.4561 0.5145

Join

MLP 0.5618 0.4891 0.5450 0.0519 0.5097 0.5000 1.0570 0.0881 0.6024 0.8745 0.3267 0.4989 0.5692 0.6110

DeepFM 0.5620 0.5109 0.5057 0.0502 0.4933 0.5000 1.0585 0.0873 0.5984 0.8764 0.2819 0.4506 0.5416 0.5915

FT-Trans 0.5569 0.5203 0.5584 0.0612 0.4917 0.5000 1.0574 0.0919 0.6319 0.8670 0.2243 0.4918 0.5825 0.6319

XGB 0.5271 0.5000 0.5340 0.0316 0.5000 0.5000 1.0550 0.0909 0.5820 0.8669 0.2195 0.0329 0.5878 0.6266

AG 0.5432 0.4969 0.5207 0.0538 0.5096 0.5000 1.0501 0.0853 0.5820 0.8669 0.2571 0.0329 0.5938 0.6354

DFS

MLP 0.5690 0.5456 0.6944 0.0743 0.8181 0.6815 0.9847 0.1112 0.8326 0.8783 0.2887 0.4903 0.7554 0.8248

DeepFM 0.5669 0.5289 0.7341 0.0635 0.8182 0.6667 0.9946 0.0845 0.8212 0.8821 0.2476 0.5760 0.7016 0.8092

FT-Trans 0.5665 0.5360 0.7412 0.0582 0.8034 0.6765 0.9888 0.1191 0.8376 0.8749 0.3010 0.3635 0.7473 0.8162

XGB 0.5469 0.5421 0.7219 0.0376 0.7906 0.6922 0.9972 0.0909 0.8251 0.8675 0.2202 0.0329 0.7600 0.8453

AG 0.5665 0.5494 0.7219 0.0749 0.8008 0.7291 0.9829 0.0888 0.8396 0.8849 0.3208 0.0329 0.7731 0.8485

R2N

R-GCN 0.5578 0.6239 0.7273 0.3557 0.8470 0.7358 0.9639 0.1790 0.8558 0.8861 0.4336 0.7020 0.7917 0.8768

R-GAT 0.5637 0.6146 0.6741 0.3595 0.8284 0.7410 0.9563 0.1546 0.8645 0.8853 0.4408 0.7072 0.8053 0.8954

R-PNA 0.5606 0.6249 0.7011 0.3638 0.8366 0.7645 0.9615 0.1791 0.8664 0.8896 0.5119 0.6534 0.8000 0.8924

HGT 0.5703 0.6260 0.6733 0.2207 0.8495 0.7551 0.9636 0.1325 0.8670 0.8817 0.4164 0.6768 0.7965 0.8805

R2N/E

R-GCN 0.5653 0.6271 0.7507 0.3691 0.8091 0.7207 0.9696 0.2503 0.8485 0.6798 0.4936 0.8065 0.7842 0.8731

R-GAT 0.5638 0.6308 0.7320 0.3746 0.7536 0.7258 0.9657 0.3055 0.8528 0.6883 0.5119 0.794 0.8065 0.8963

R-PNA 0.5608 0.6322 0.6414 0.3758 0.8427 0.7348 0.9675 0.252 0.8657 0.7045 0.5159 0.7716 0.7988 0.8847

HGT 0.5630 0.6323 0.6672 0.2072 0.8342 0.7208 0.9663 0.2916 0.8560 0.6603 0.4692 0.7896 0.8071 0.8965

Table 2: 4DBInfer is informative. Performance results of baselines; the top-5 performing models on each dataset are shaded green - the darker,
the better. For abbreviations, EA = Entity Attribute Prediction, RA = Relationship Attribute Prediction, FK = Foreign Key Prediction, Ind. =
Inductive, Trans. = Transductive. And some entries are marked as ‘N/A’ because there are no features in the target table such that single table
models cannot be applied.
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A DATASET AND TASK DESCRIPTIONS
In this section we provide comprehensive details pertaining to all datasets and tasks originally listed in Table 2. Additionally, for aggregated

summary statistics/attributes across each dataset and task, please see Tables 3 and 4, respectively. If not specified, we split training, validation

and testing samples according to their timestamps, to simulate real-world scenarios where the trained models will be evaluated over new

observed samples. Another design choice is the prediction timestamp, which determines what information in the RDB is available at

prediction time. By default, we use the timestamp of the target table as the prediction time, assuming that prediction needs to be made upon

a new entry added to the target table. All the datasets have been released as part of the Python package dbinfer-bench:

pip install dbinfer-bench

It can then be loaded from Python:

import dbinfer_bench as dbb

Dataset # Tables # Columns # Rows

AVS 3 24 349,967,371

Outbrain (OB) 8 31 2,170,441,217

Diginetica (DN) 5 28 3,672,396

RetailRocket (RR) 3 11 23,033,676

Amazon (AB) 3 15 24,291,489

StackExchange (SE) 7 49 5,399,818

MAG 5 13 21,847,396

Seznam (SZ) 4 14 2,681,983

Table 3: Statistics of each dataset.

Dataset Task Description Prediction Type Metric #Train / #Val / #Test

AVS Customer Retention Prediction (Retent.) Relationship Attribute AUC↑ 109,341 / 24,261 / 26,455

Outbrain (OB) Click-through-rate Prediction (CTR) Relationship Attribute AUC↑ 69,709 / 8,715 / 8,718

Diginetica (DN)

Click-through-rate Prediction (CTR) Relationship Attribute AUC↑ 108,570 / 6,262 / 5,058

Purchase Prediction (Purch.) Foreign Key MRR↑ 16,247 / 82,721 / 78,357

RetailRocket (RR) Conversion-rate Prediction (CVR) Relationship Attribute AUC↑ 80,008 / 9,995 / 9,997

Amazon (AB)

User Churn Prediction (Churn) Entity Attribute AUC↑ 1,045,568 / 149,205 / 152,486

Rating Prediction (Rating) Relationship Attribute RMSE↓ 78,485 / 7,762 / 13,492

Purchase Prediction (Purch.) Foreign Key MRR↑ 78,485 / 387,914 / 677,211

StackExchange (SE)

User Churn Prediction (Churn) Entity Attribute AUC↑ 142,877 / 88,164 / 105,612

Post Popularity Prediction (Popul.) Entity Attribute AUC↑ 308,698 / 38,587 / 38,588

MAG

Venue Prediction (Venue) Entity Attribute Acc.↑ 629,571 / 64,879 / 41,939

Citation Prediction (Cite) Foreign Key MRR↑ 108,000 / 591,942 / 592,176

Seznam (SZ)

Charge Type Prediction (Charge) Entity Attribute Acc.↑ 443,276 / 55,410 / 55,410

Prepay Type Prediction (Prepay) Entity Attribute Acc.↑ 1,151,620 / 143,952 / 143,953

Table 4: Benchmark dataset and task details. Note that for foreign key prediction, the validation and test instances include the
generated negative samples as well.

A.1 Acquire Valued Shoppers Challenge (AVS)

dataset = dbb.load_rdb_data('avs')

The Acquire Valued Shoppers Challenge [18] is a Kaggle dataset from an e-commerce platform. The dataset has three tables: a History
table containing the history of each promotion offer given to a customer, an Offers table containing the information of the promotion offers

themselves, and a Transactions table containing the transaction history between customers and products. The schema diagram is shown in

Figure 3, where the timestamp column, primary keys, and foreign keys are indicated. Note that the Customers, Chain, Category, Company
and Brand tables are dummy tables that do not exist natively, but are induced from the corresponding foreign key columns [15].



Figure 3: Schema graph for the AVS dataset.

A.1.1 Task: Customer Retention Prediction (Retent.)

task = dataset.get_task('repeater ')

The task given by the dataset vendor is to predict whether a customer will be retained by the platform, i.e. History.repeater. Note that
in the real world, there are two possible interpretations of the repeater column: either a given customer will be retained (hence associated

with the customer only, making it an attribute of an entity), or else a given customer will repeat the same purchase promoted by the offer

(hence associated with the customer and the offer, making it an attribute of a relationship). Since the vendor did not make this distinction

clear, we chose the second option. Moreover, since the prediction time is likely different than the date a promotion is offered to a customer,

we selected a timestamp later than the offer date.

A.2 Outbrain Click Prediction (OB)
dataset = dbb.load_rdb_data('outbrain ')

The Outbrain dataset [53] is a large relational dataset from the content discovery platform Outbrain. It contains a sample of users’

page views and clicks observed on multiple publisher sites in the United States between June 14, 2016, and June 28, 2016. The dataset

consists of several tables. The Events table provides the context information about the user events. The Click table shows which ads were

clicked. The Promoted table provides details about the advertisements. The DocumentsCategory, DocumentsTopic and DocumentsEntity
provide information about the promoted contents, as well as Outbrain’s confidence in each respective relationship. In DocumentsEntity, an
entity_id can represent a person, organization, or location. The rows in DocumentsEntity give the confidence that the given entity was

referred to in the document. The dataset schema is shown in Figure 4. Table User is a dummy table induced from the Pageview.uuid and
Event.uuid foreign key columns.

A.2.1 Task: CTR Prediction (CTR).

task = dataset.get_task('ctr')

The task is to predict whether a promoted content will be clicked or not, i.e. predicting Click.clicked.

A.3 Diginetica Personalized E-Commerce Search Challenge (DG)

dataset = dbb.load_rdb_data('diginetica ')



Figure 4: Schema graph for the Outbrain dataset.

The dataset diginetica [17] is part of the Personalized E-commerce Search Challenge and is provided by DIGINETICA and its partners.

The dataset focuses on predicting the search relevance of products based on users’ personal shopping, search, and browsing preferences.

The diginetica dataset consists of several tables: Product contains information about the products, Click contains click data, etc. We

conducted the following data cleaning steps from the original tables:

(1) The original data does not provide accurate session start times. Instead, the dataset provides the event date and the timeframe (in

milliseconds) that each event happens relative to its session. We generate a random start time for each session and convert the relative

timeframe of each event into an absolute timestamp.

(2) Product names and query search strings are represented as sequence of anonymous token IDs in the original data. We convert them into

two tables ProductNameToken and QuerySearchstringToken.
(3) The original Query table stores the query results as a column of item ID lists. We convert that column into a separate table QueryResult

where each entry is a triplet of queryId, itemId and timestamp.

Steps 2 and 3 make the database satisfy the First Normal Form (1NF) where there are only single-valued attributes [25]. Figure 5 depicts

the final RDB schema. Note that Token, Orders, Session and User are dummy tables induced from the corresponding foreign keys.

A.3.1 Task: CTR Prediction (CTR).

task = dataset.get_task('ctr')



Figure 5: Schema graph for the Diginetica dataset.

The task is to predict whether an item will be clicked when listed by a given query, i.e., a binary classification task given a triplet of

queryId, itemId and timestamp. Positive samples are collected from the Click table while negative samples are those in QueryResult but

not in Click. The prediction timestamp is the first time an item is listed by a query to simulate the setting that a recommender system

attempts to return the most relevant items for a query. We further down-sample the train/validation/test set to around 100K samples.

A.3.2 Task: Product Purchase Prediction (Purch.)

task = dataset.get_task('purchase ')

This task is to predict which items will be purchased in a given session, i.e., predicting the foreign key column Purchase.itemId. The
evaluation metric is Mean Reciprocal Rank (MRR), where the model needs to rank the positive purchase high among 100 randomly generated

negative candidates.

A.4 RetailRocket Recommender System Dataset (RR)
dataset = dbb.load_rdb_data('retailrocket ')

The dataset RetailRocket [84] is a Kaggle dataset provided by the E-commerce platform RetailRocket. The recorded events represent user

interactions on the website. The dataset includes several tables: View contains information about whether an item was added to the cart by

an user. Category stores product category tree. The original dataset stores all item properties in the ItemProperty table where most of the

property names and values are anonymous tokens. We extract two properties into separate tables: ItemAvailability marks the availability

status of an item at certain timestamp; ItemCategory stores the category information of each item. The dataset schema is shown in Figure 6.

Note that Item, Visitor are dummy tables induced from the corresponding foreign keys.

A.4.1 Task: Conversion Rate Prediction (CVR).

task = dataset.get_task('cvr')



Figure 6: Schema graph for the RetailRocket dataset.

Figure 7: Schema graph for the Amazon Book Reviews dataset.

The task is to classify whether an item will be added to the shopping cart by a visitor, i.e. predicting column View.added_to_cart. We

downsampled the training/validation/testing set to contain 100K samples.

A.5 Amazon Book Reviews (AB)

dataset = dbb.load_rdb_data('amazon ')

The Amazon Review dataset [55] represents an extensive collection of product reviews on Amazon, encompassing 233 million unique

reviews from approximately 20 million users. Our benchmark utilizes a 5-core subset from the Books category of the original dataset. As

depicted in Figure 7, the curated dataset is organized into three tables: The Customer table, which catalogues unique IDs for each reviewing

customer; the Product table, detailing each book with a unique ID, brand, category, description, price, and title; and the Review table,

documenting each review’s connection to a customer and a product, along with the review’s rating, text, submission time, summary, and

verification status. Spanning from June 25, 1996, to September 28, 2018, this relational database comprises 1.85M customers, 21.9M reviews,

and 506K products.

A.5.1 Task: User Churn Prediction (Churn).

task = dataset.get_task('churn ')



The task is to predict whether a user will continue to engage with the platform and make any purchases in the subsequent three months,

forming a binary classification challenge. We select a subset of active users—who have contributed a minimum of 10 reviews in the two

years prior to the prediction timestamp—as the set for training, validation and testing.

A.5.2 Task: Rating Prediction (Rating).

task = dataset.get_task('rating ')

This task is to infer the numerical rating a user might assign to a product, i.e., a regression task on the column Review.rating. The
prediction should rely solely on the historical review and purchase data, without access to the current review content. The model needs to

identify and utilize trends in past user interactions and product engagements to accurately predict the rating, which can range from 1 to 5

stars.

We remark that in practice, when predicting the rating, columns such as Review.review_text, Review.review_time, Review.summary
at the same row should not be used, since in real-world settings they are usually given by the customer together with the rating. Hence

using these columns to predict a rating at the same row should be treated as a form of information leakage. Nevertheless, it is perfectly fine

to use historical review texts and summaries to predict the present rating.

A.5.3 Task: Product Purchase Prediction (Purch.)

task = dataset.get_task('purchase ')

The task is to predict which product will be purchased by a given user, i.e., predicting the foreign key column Product.product_id. The
evaluation metric is Mean Reciprocal Rank (MRR), where the model needs to rank the positive purchase high among 50 randomly generated

negative candidates per positive candidate.

A.6 StackExchange (SE)
dataset = dbb.load_rdb_data('stackexchange ')

The dataset StackExchange [61] is collected from the online question-and-answer platform StackExchange. The dataset includes several

tables: Badges includes the information of badges assigned to users; Comments stores comments attached to posts; Posts, Tag, PostLink
and PostHistory are tables of post data; Users includes information of users; Votes indicates which posts are voted by which users. The

dataset schema is shown in Figure 8. Note that prior work [23] has also relied on the same data source for benchmarking. Although we

adopt the same task specification, our StackExchange dataset nonetheless remains distinct from [23] in three aspects:

(1) We retain the Tag table from the raw data source, which contains the linkage to an excerpt post and a Wiki post for each StackExchange

tag;

(2) We expand the Tag attribute in the posts table (containing a set of tags for each post) into another table PostTag, thereby preserving

additional structural information related to post tags;

(3) We pull more data from the raw data source, with time-stamps up until 2023-09-03; this augmentation results in 6 months more data

than the one used by [23].

A.6.1 Task: User Churn Prediction (Churn).

task = dataset.get_task('churn ')

The task is to predict whether a user will make any engagement, defined as vote, comment, or post, to the site within the next 2 years

starting from year 2011, 2013, 2015, 2017, and 2019 for the training set, and year 2021 for the validation set, and year 2023 for the test set.

Note that in the training set, each user requires multiple predictions for different time windows. We also make sure that the prediction

timestamps are always later than the user’s own creation date.

A.6.2 Task: Post Popularity Prediction (Popul.)

task = dataset.get_task('upvote ')

The task is to predict whether a given post will be voted in one year since the post was created.

A.7 Microsoft Academic Graph (MAG)
dataset = dbb.load_rdb_data('mag')

The dataset is a subset of the Microsoft Academic Graph (MAG), a knowledge graph for academic publications, venues and author

information. We include this dataset to highlight the duality between graph and RDB data. We repurposed the ogbn-mag dataset from the

popular Open Graph Benchmark (OGB) [35] into an RDB of multiple tables: Paper, FieldOfStudy, Author and Institution are derived
from the four node types; while Cites, HasTopic, Writes and AffiliatedWith are created from the four relationships. We retained the

same set of node/edge features as table attributes. Specifically, for the Paper table, feat stores the vector embeddings of each table (processed

by OGB) and label stores which venue a paper is published at (also the prediction target of Task Venue). The final RDB schema is shown in

Figure 9.



Figure 8: Schema graph for the StackExchange dataset.

A.7.1 Task: Paper Venue Prediction (Venue).

task = dataset.get_task('venue ')

The task is to predict the venue (conference or journal) a paper is published at. Because the label column is included in the RDB, using

the column in making the prediction of the same paper is treated as a form of information leakage, but the model is free to use the labels

of connected papers. In total, there are 349 different venues, making the task a 349-class classification problem. Following the practice of

ogbn-mag, papers are split into train, validation and test sets by their published years.

A.7.2 Task: Citation Prediction (Cite).
task = dataset.get_task('cite')

The task is to predict which paper will be cited, i.e., predicting the foreign key column Cites.paper_cite. We sampled 100K citations as

positive samples, and randomly generated 100 negative candidates for each citation in the validation and test sets. The evaluation metric is

Mean Reciprocal Rank (MRR).

A.8 Seznam (SZ)
dataset = dbb.load_rdb_data('seznam ')

The Seznam dataset [54] is collected from a web portal and search engine in the Czech Republic, which contains online advertisement

expenditures from a customer’s wallet. The dataset includes the following tables: Client, Dobito (charges), Proběhnuto (prepay), and



Figure 9: Schema graph for the MAG dataset.

Figure 10: Schema graph for the Seznam dataset.

ProběhnutoMimoPeněženku (charges outside the wallet). The Client table provides the location and domain field information of the

anonymized client. The Proběhnuto table includes information about prepayments made into a wallet in Czech currency. The Dobito table

includes information about charges made from the wallet in Czech currency. The ProběhnutoMimoPeněženku table includes information

about charges made in Czech currency, but not deducted from the wallet. The RDB schema is shown in Figure 10, where the timestamp

column, primary keys, and foreign keys are indicated.

A.8.1 Task: Charge Type Prediction (Charge).

task = dataset.get_task('charge ')

The task of Charge Type Prediction is to predict the type of each charge, i.e., Dobito.sluzba. The evaluation metric for charge prediction

is accuracy among 8 classes.

A.8.2 Task: Prepay Type Prediction (Prepay).

task = dataset.get_task('prepay ')

The task of Prepay Type Prediction is to predict the type of each prepay, i.e., Proběhnuto.sluzba. The evaluation metric for prepay

prediction is accuracy among 8 classes.



B ABLATIONS
B.1 With and Without Dummy Tables
In accordance with the descriptions of each dataset and task (Appendix A), we introduce dummy tables with PK columns matched with

high-cardinality columns in original RDB tables. Further details can also be found in Appendix G.4, where Row2Node+ and Row2N/E+

are introduced as two approaches (built on Row2Node and Row2N/E, respectively) that incorporate dummy tables. An example is the

“Customer" table in AVS. Introducing dummy tables can enrich inter-row connections, with multiple implications. Firstly, adding dummy

tables establishes new FK-PK relationships, from which DFS may obtain more features. Secondly, dummy tables introduce extra node types

and edge types that can be leveraged by GNN models.

To study its impact on model performance, we choose five datasets involving dummy tables, and evaluate the performance changes for

both DFS solutions and GNN solutions, with and without the presence of dummy tables. In order to remove the dummy tables, for RR and

MAG, we directly drop the FK columns referring to the dummy tables. We choose this approach instead of converting these columns into

categorical features in order to maintain an inductive setting. However, for the AB and AVS datasets, directly dropping these columns would

result in changes to task specification. Hence, in these cases, we treat them as categorical features and drop the dummy tables.

Table 5 shows the results with and without dummy tables. For DFS with MLP model, we only report the results on AB and AVS. This is

because, for the other datasets, the generated features remain unchanged regardless of the presence of dummy tables. It is evident that

the performance significantly decreases without the inclusion of dummy tables, underscoring the importance of creating these tables. The

situation is more complex for GNN solutions. Removing the dummy tables consistently leads to a decrease in performance for the AB,

AVS, and MAG datasets. However, for results on OB datasets, there appears to be no significant difference in performance with or without

dummy tables. One possible explanation is that the related columns have less importance, resulting in minimal benefits from the addition of

dummy tables. Nevertheless, for certain datasets, creating dummy tables can enrich the connection relationships and effectively enhance

performance.

Dataset/Task AB/Rating AVS/Retent. OB/CTR MAG/Venue

Prediction Type RA RA RA EA

Evaluation Metric RMSE↓ AUC↑ AUC↑ Acc.↑

DFS MLP

w/ dummy 0.9847 0.5690 - -

w/o dummy 1.0291 0.5469 - -

R2N R-GCN

w/ dummy 0.9639 0.5653 0.6239 0.3792

w/o dummy 1.0495 0.4761 0.6173 0.3762

R2N R-GAT

w/ dummy 0.9563 0.5637 0.6146 0.3888

w/o dummy 1.0493 0.4687 0.6160 0.3771

R2N/E R-GCN

w/ dummy 0.9696 0.5653 0.6271 0.4671

w/o dummy 1.0536 0.4708 0.6244 0.4111

R2N/E R-GAT

w/ dummy 0.9657 0.5638 0.6308 0.4512

w/o dummy 1.0511 0.4708 0.6328 0.4071

Table 5: DFS and GNN performance comparisons with or without dummy tables. Note that Row2Node+ and Row2N/E+,
respectively, are used in Appendix G.4 to reference Row2Node and Row2N/E graph extraction methods augmented with dummy
tables.

B.2 Stronger Task-Specific GNN - Neural Common Neighbors
To explore the possibility of stronger GNN architectures on a task-specific basis, we have implemented a powerful link prediction method

based on the Neuron CommonNeighbor (NCN) algorithm [69]. NCN is an effective approach for link prediction that includes the incorporation

of common neighbor embeddings into the prediction process. This method has distinct advantages in terms of expressiveness, as common

neighbors cannot be expressed in traditional message-passing GNN, and it has previously been shown to achieve state-of-the-art performance.

We have conducted tests using NCN for all 8 relation attribute and foreign key tasks, and the results indicate that NCN performs quite well.

Furthermore, the results demonstrate that RDB benchmark graphs still maintain certain characteristics when compared to general graph

tasks, suggesting that further research on GNN can be applied to the RDB benchmark.

To restate the link prediction problem: link prediction is a widely studied issue in graph analysis, whereby a model is tasked with predicting

the presence or absence of a link between two given nodes. In the context of the RDB benchmark, this problem encompasses two tasks:

relation attribute prediction and foreign key prediction.

Since the original NCN method exclusively applies to static homogeneous graphs, we have expanded it to encompass temporal and

heterogeneous settings. The primary process can be divided into three supplementary steps compared to simple GNN baselines: specifying

common neighbor meta-paths, retrieving common neighbor embeddings in GNN layers, and appending common neighbor embeddings.



Suppose that we are given two nodes 𝑖0 and 𝑗0, having node types 𝑣𝑖,0 and 𝑣 𝑗,0 respectively. Common neighbor meta-paths consist of two

sequences of node types [𝑣𝑖,0, 𝑣𝑖,1, . . . , 𝑣𝑖,𝑘𝑖 ] and [𝑣 𝑗,0, 𝑣 𝑗,1, . . . , 𝑣 𝑗,𝑘 𝑗 ], where 𝑣𝑖,𝑘𝑖 = 𝑣 𝑗,𝑘 𝑗 denotes the common neighbor node type, and 𝑘𝑖 and

𝑘 𝑗 represent the number of common neighbor hops from 𝑖 and 𝑗 . The two meta-paths specify how we discover common neighbors. We sample

neighboring nodes of 𝑖0 and 𝑗0 with node types based on their corresponding meta-paths until we reach the final hop. Subsequently, we assess

whether the sampled nodes are the same, implying that they are common neighbor nodes. Formally, we search for nodes𝐶𝑜𝑚𝑚𝑜𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 =

{𝑖𝑘𝑖 = 𝑗𝑘 𝑗 } such that there exist nodes [𝑖1, 𝑖2, . . . , 𝑖𝑘𝑖 ] satisfying 𝑖𝑡 ∈ N 𝑣𝑖,𝑡−1,𝑣𝑖,𝑡
𝑖𝑡−1

, 𝑡 ∈ [1, . . . , 𝑘𝑖 ], and [ 𝑗1, 𝑗2, . . . , 𝑗𝑘 𝑗 ] satisfying 𝑗𝑡 ∈ N 𝑣𝑗,𝑡−1,𝑣𝑗,𝑡
𝑗𝑡−1

, 𝑡 ∈
[1, . . . , 𝑘 𝑗 ]. Once we have identified the common neighbors, our goal is to retrieve their embeddings. One simple approach is to re-run GNN

on the common neighbor nodes. However, we adopt a more efficient method by directly utilizing the inner GNN embeddings as the common

neighbor embeddings. It is important to note that the common neighbor nodes are also sampled during the message passing, and their

intermediate embeddings are also computed. Therefore, we can utilize the corresponding inner GNN embeddings 𝒉
𝑣𝑖,𝑘𝑖
𝑖𝑘𝑖 ,ℓ−𝑘𝑖

and 𝒉
𝑣𝑗,𝑘𝑗

𝑗𝑘𝑗 ,ℓ−𝑘 𝑗
.

The final embedding for prediction is derived from𝑀𝐿𝑃 (𝒉𝑣𝑖,0
𝑖,ℓ

| |𝒉𝑣𝑗,0
𝑗,ℓ

| |∑𝑖𝑘𝑖 ∈𝐶𝑜𝑚𝑚𝑜𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝒉𝑣𝑖,𝑘𝑖𝑖𝑘𝑖 ,ℓ−𝑘𝑖
| |∑𝑗𝑘𝑗 ∈𝐶𝑜𝑚𝑚𝑜𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝒉

𝑣𝑗,𝑘𝑗

𝑗𝑘𝑗 ,ℓ−𝑘 𝑗
).

We have implemented NCN based on R-GCN and conducted tests on it for some Relation Attribute and Foreign Key tasks. The results

are presented in Table 6 (with the best performance in boldface), where NCN outperforms R-GCN, suggesting the potential for stronger

link prediction models. An intriguing phenomenon arises as the performance of NCN varies depending on the graph construction method

employed, but generally, it exhibits superior performance for Row2N/E. One plausible explanation is that Row2N/E generates a denser graph,

thus making it easier to discover common neighbors. Performance differences due to different graph structures are also worthwhile as a

future work.

Dataset AVS OB RR AB MAG

Task Retent. CTR CTR Rating Purch. Cite

Prediction Type RA RA RA RA FK FK

Evaluation metric AUC↑ AUC↑ AUC↑ RMSE↓ MRR↑ MRR↑

R2N

R-GCN 0.5578 0.6239 0.8470 0.9639 0.1790 0.6336

NCN 0.5613 0.6189 0.8620 0.9750 0.1944 0.6634

R2N/E

R-GCN 0.5653 0.6271 0.8091 0.9696 0.2503 0.7539

NCN 0.5658 0.6294 0.8156 0.9638 0.3071 0.8147

Table 6: Results of NCN

B.3 Propagating Labels
In the context of classification and regression tasks, the incorporation of label information from related instances can serve as a strong

signal and indicator for predicting the target. We add label information to our pipeline and consider it as a normal feature, performing

label propagation in the message passing process to enhance the predictive power. With the help of the temporal neighbor sampler in our

framework, any future information will be filtered out, which avoids label leakage when introducing label information.

We now examine the effectiveness of propagating labels from two angles. We select four tasks and assess the changes in performance

of R-GCN under different settings. Results are presented in Table 7. Firstly, we remove the label information and only rely on features

for prediction. Compared to the default setting which unitizes both label and features, this leads to a significant decrease in performance,

underscoring the importance of incorporating label information. Secondly, we remove all features and retain only the label information

and data structure, establishing a pure label propagation setting. As a result, in three out of four tasks, there is no noticeable decline in

performance. For the RR-CTR task, although the AUC decreases by approximately 3%, the performance of only utilizing labels is still superior

to that of only using features.

Based on the comparison of these three sets of results, we can conclude that related labels are often quite informative and can be a very

discriminative feature. Propagating labels can therefore serve as an effective and essential approach for enhancing predictions in many

practical scenarios.

C TOOLBOX DESCRIPTION
We release the benchmarks as a Python package dbinfer-bench, installable via PyPI:

pip install dbinfer-bench

Besides, we also provide a toolbox dbinfer for running and comparing the various baselines described in the paper. We modularized the

graph-centric predictive pipeline (Figure 2) into several out-of-box command-line tools:

• Data transform and featurization command transform: Loads an RDB dataset, performs a series of data transformation according

to user configurations, and writes the transformed data as a new RDB dataset. The default transformations include: normalizing and

canonicalizing various types of feature data (e.g., numerical, categorical, datetime columns, etc.), creating dummy tables, embedding



Dataset/Task AB/Rating RR/CTR OB/CTR MAG/Venue

Prediction Type RA RA RA EA

Evaluation Metric RMSE↓ AUC↑ AUC↑ Acc.↑

R2N

Default 0.9639 0.847 0.6239 0.4338

Remove label 1.0064 0.7808 0.5233 0.3921

Remove features 0.9742 0.817 0.6238 0.4329

R2N/E

Default 0.9696 0.8091 0.6271 0.4895

Remove label 1.0057 0.7554 0.4952 0.4615

Remove features 0.9566 0.7818 0.6227 0.5033

Table 7: Results of propagating labels.

text data into vectors, filtering redundant columns and so on. Users can plug in new data transform logic by inheriting the pre-defined

interfaces such as column-wise or table-wise transformer.

• Deep Feature Synthesis command dfs: Converts an RDB dataset into a new dataset with only a single table, augmented with features

produced by the Deep Feature Synthesis algorithm [41]. The command allows users to configure the search depth of the algorithm

(setting depth to one gives the simple join baseline), the set of aggregators in use and the backend engine to run (FeatureTools or

SQL-based engine).

• Graph construction command construct-graph: Takes an RDB dataset and produces a graph dataset using algorithms Row2Node

(R2N) or Row2N/E (R2N/E).

• Training tabular-based solution fit-tab: Trains a selected tabular-based solution (e.g., MLP, DeepFM, etc.) over an RDB dataset.

Running it over the original RDB dataset corresponds to the single table baseline, while the late-fusion solutions can be launched by

running it over the dataset processed by DFS.

• Training graph-based solution fit-gml: Trains a selected GNN-based solution over a graph dataset.

The toolbox is designed for usability, with a philosophy of omitting unnecessary coding as much of possible. For example, researchers

can freely embed some of the commands into their own pipeline, replace some steps with their own, or compose them into new solutions.

Moreover, all the commands can be configured via YAML files without modification of the source code. The modularized design also

lowers the complexity of fair comparisons among solutions of very different nature. For example, since the tabular-based and GNN-based

solutions use the same set of featurization and data transformation steps, it establishes their comparison upon the same foundation. Similarly,

researchers can also swap in/out different preprocessing steps to study their impact over the predictive architectures.

D BASELINE IMPLEMENTATION DETAILS
D.1 DFS-Based Models
Our implementation of DFS leverages Featuretools [22] with the following aggregators: MEAN, MAX, MIN for numeric and embedding features,

MODE for categorical features, and COUNT for number of elements per aggregation (i.e. degree). For vector features, we implement custom

aggregation primitives as Featuretools does not support it natively. Note that to avoid temporal leakage, for each prediction with timestamp,

DFS should not aggregate information from the future beyond the given timestamp (a.k.a. cutoff time). Unfortunately, Featuretools does not
support cutoff time very efficiently, and obtaining results on some datasets such as RetailRocket is impossible even after 60 hours on an AWS

r5.24xlarge instance. While getML’s FastProp [26] offers another efficient alternative to Featuretools, the propositionalization engine is

implemented in C++ and extending it with custom primitives to support aggregation of embeddings is not trivial. So we developed another

solution that translates feature aggregation generated by DFS into SQL, which are then executed by DuckDB.
7

The predictive models we choose are MLP, DeepFM [31], FT-Transformer [30] and XGBoost [8]. We run XGBoost by invoking TabularPre-

dictor from AutoGluon [21], restricting the candidate models to XGBoost only. For MLP, DeepFM and FT-Transformer, we first project each

column into a fixed-length representations using a linear layer, treating categorical variables as one-hot vectors. For MLP, we concatenate all

fixed-length representations into a single vector as input. For DeepFM and FT-Transformer, we treat each representation as separate field.

The hyperparameter grid is shown in Table 8.

D.2 GNN Models
We choose R-GCN [57], R-GAT [6], HGT [37], and R-PNA (extending [13] to heterogeneous graphs) as our baselines, with the hyperpa-

rameter grid shown in Table 9. The choice of PNA is due to its multitude of aggregators, resembling DFS.

However, the models do not naturally account for edge features. Since Row2N/E could convert some tables to edges and therefore some

columns to edge features, we must also extend the aforementioned four models to use edge feature inputs accordingly. The high-level idea is

7
https://duckdb.org/



Hyperparameter Values

Fixed-length representation size {8,16}

Hidden dimension size {128,256}

Dropout {0, 0.1, 0.3, 0.5}

Number of layers {2, 3, 4}

FT-Transformer attention heads 8

Table 8: Hyperparameter grid for DFS-based models.

Hyperparameter Values

Fixed-length representation size {8,16}

GNN layers {2,3}

Neighbor sampling fanout {5, 10, 20}

Hidden dimension size {128, 256}

Dropout {0, 0.1, 0.3, 0.5}

Number of predictor MLP layers {2, 3, 4}

GAT/HGT attention heads {4, 8}

PNA aggregators Mean, Min, Max

Table 9: Hyperparameter grid for GNN-based models.

to (1) project the features on each edge 𝑒 into a fixed-length representation 𝑥𝑒 , (2) during message passing from a node 𝑢 to a node 𝑣 along

edge 𝑒 , 𝑥𝑒 is also sent along with 𝑢’s own representation to 𝑣 . The following describes the mathematical details.

To facilitate discussion, denote 𝑢, 𝑣 as nodes, and triplet (𝑢, 𝑒, 𝑣) as an edge connecting from 𝑢 to 𝑣 with a unique identifier 𝑒 . Moreover,

denote 𝑡 (𝑣) as the node type of 𝑣 , and 𝜏 (𝑒) as the edge type of 𝑒 .

D.2.1 R-GCN and R-PNA. R-GCN can be expressed as
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whereN(𝑣) represents the edges going towards 𝑣 and 𝑐𝑒 is some normalization constant associated with edge 𝑒 . To account for edge features

𝑥𝑒 , we extend it to (changes to the previous equation highlighted in blue)
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We extend R-PNA to handle 𝑥𝑒 in a similar fashion.

D.2.2 R-GAT. R-GAT’s formulation is similar to R-GCN’s, except that one replaces 𝑐𝑒 with a parametrized attention function 𝛼 :

ℎ
(𝑙 )
𝑣 = 𝜎

©«W(𝑙 )
𝑡 (𝑣)ℎ

(𝑙−1)
𝑣 +

∑︁
(𝑢,𝑒,𝑣) ∈N(𝑣)

𝛼𝜏 (𝑒 )
(
ℎ
(𝑙−1)
𝑣 , ℎ

(𝑙−1)
𝑢 ;V(𝑙 )

𝜏 (𝑒 )

)
W(𝑙 )
𝜏 (𝑒 )ℎ

(𝑙−1)
𝑢

ª®¬
𝛼𝜏 (𝑒 )

(
ℎ
(𝑙−1)
𝑣 , ℎ

(𝑙−1)
𝑢 ;V(𝑙 )

𝜏 (𝑒 )

)
= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥𝑢

[
𝑎𝜏 (𝑒 )

(
ℎ
(𝑙−1)
𝑣 , ℎ

(𝑙−1)
𝑢 ;V(𝑙 )

𝜏 (𝑒 )

)]
𝑎𝜏 (𝑒 )

(
ℎ
(𝑙−1)
𝑣 , ℎ

(𝑙−1)
𝑢 ;V(𝑙 )

𝜏 (𝑒 )

)
= 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(
V(𝑙 )
𝜏 (𝑒 ) [ℎ

(𝑙−1)
𝑢 ∥ℎ (𝑙−1)

𝑣 ]
) (10)

We extend the equations above to
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(𝑙−1)
𝑢 ∥𝑥𝑒

]ª®¬
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ℎ
(𝑙−1)
𝑣 , ℎ

(𝑙−1)
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𝜏 (𝑒 )

)
= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥𝑢

[
𝑎𝜏 (𝑒 )

(
ℎ
(𝑙−1)
𝑣 , ℎ

(𝑙−1)
𝑢 , 𝑥𝑒 ;V(𝑙 )

𝜏 (𝑒 )

)]
𝑎𝜏 (𝑒 )

(
ℎ
(𝑙−1)
𝑣 , ℎ

(𝑙−1)
𝑢 , 𝑥𝑒 ;V(𝑙 )

𝜏 (𝑒 )

)
= 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(
V(𝑙 )
𝜏 (𝑒 )

[
ℎ
(𝑙−1)
𝑢 ∥ℎ (𝑙−1)

𝑣 ∥𝑥𝑒
] ) (11)



D.2.3 HGT. For HGT, we make two changes to make it account for 𝑥𝑒 : (1) change the MSG-head𝑖 function in Equation 4 from [37] to

additionally concatenate the edge representation 𝑥𝑒 before linear projection, (2) in the computation of ATT-head𝑖 in Equation 3 from [37],

add to𝑊𝐴𝑇𝑇
𝜙 (𝑒 ) a matrix that is a parametrized linear projection of 𝑥𝑒 .

E FURTHER DETAILS REGARDING PRIOR CANDIDATE RDB BENCHMARKS
Since OpenML [64] contains exclusively single table datasets, and OGB [34, 36], HGB [51], and TGB [38] contains exclusively graphs

processed from raw data, we only discuss RelBench, RDBench and CTU Prague Relational Learning Repository in detail.

E.1 RelBench
RelBench [23] is among a series of contemporary works that highlights the need to transition from graph machine learning to RDBs. As

of the time of this writing, RelBench has two datasets: Amazon Book Reviews and StackExchange. Two tasks are designated for Amazon

Book Reviews: (1) predicting whether a user will churn beyond a certain timestamp, (2) predicting a user’s long term value beyond a certain

timestamp. The two tasks designated for StackExchange are: (1) predicting whether a user will churn beyond a certain timestamp, (2) predict

the number of upvotes a post will receive at a given time window. In all tasks, RelBench designates multiple time windows for every entity to

make prediction, effectively making all tasks a time series forecasting task. Presently though, [23] does not come with experimental results.

E.2 RDBench and CTU Prague Relational Learning Repository
CTU Prague Relational Learning Repository (CRLR) [54] is a collection of 62 real-world and 21 synthetic relational databases. Each relational

database comes with one task. However, most of the data are not purposed for a modern RDB machine learning benchmark for the following

reasons:

(1) Most of the data are dated well before the big data era: only 15 real-world datasets have more than 10,000 labeled instances.

(2) The RDB schema is degenerate in that a one-hop outer join can produce a table with no loss of information. An example is the Airline
dataset.

8

(3) Some tasks are sufficiently easy such that our baselines already achieve 100% accuracy, which compromises our purpose to of using

such benchmarks for further advancing RDB machine learning research. The Accidents 9
dataset is one such representative example.

On the other hand, some tasks have either a very high degree of difficulty or too many noisy or irrelevant features, such that DFS and

GNN-based solutions did not show any difference relative to single-table baselines.

(4) The business justification of the tasks are not as good as the ones typically found in data science competitions. An example is the IMDB
10

dataset, where the task is to predict an actor’s gender.

Prior work RDBench [79] attempted to address the problems 1 and 2 listed above by handpicking a subset, and specifying multiple

tasks for each dataset. However, they did not attempt to address problem 3, and some tasks are still too easy, reaching 100% accuracy or 0

regression error.

F SYSTEM RUNNING TIME
Table 10 records the running time of dbinferfor both DFS-based and GML-based solutions. For GML, we measure the time to train a

GraphSAGE model for an epoch, including forward, backward and weight update. The DFS time is measured using our SQL-based engine

which is typically 10x-1000x faster than using FeatureTools [22].

G FURTHER DETAILS ON THE CONVERSION OF RDBS TO GRAPHS
A heterogeneous graph G = {V, E} [63] is defined by sets of node types 𝑉 and edge types 𝐸 such that V =

⋃
𝑣∈𝑉 V𝑣

and E =
⋃
𝑒∈𝐸 E𝑒 ,

whereV𝑣
references a set of 𝑛𝑣 = |V𝑣 | nodes of type 𝑣 , while E𝑒 indicates a set of𝑚𝑒 = |E𝑒 | edges of type 𝑒 . Both nodes and edges can have

associated features, denoted 𝑥𝑣
𝑖
and 𝑧𝑒

𝑗
for node 𝑖 of type 𝑣 and edge 𝑗 of type 𝑒 respectively. Additionally, if we allow for typed edges linking

together arbitrary numbers of nodes possibly greater than two, which defines a so-called hyperedge, then G generalizes to a heterogeneous

hypergraph [5, 62], a perspective that will provide useful context below. And finally, for a dynamic graph G(𝑠), all of the above entities can be

generalized to depend on a state variable 𝑠 as before. We next consider two practical approaches for converting an RDB into a heterogeneous

graph (or possibly hypergraph). The motivation here is straightforward: even if we believe that graphs are a sensible route for pre-processing
RDB data, we should not prematurely commit to only one graph extraction procedure.

G.1 Row2Node
Perhaps the most natural and intuitive way to convert an RDB D to a heterogeneous graph G is to simply treat each row as a node, each

table as a node type, and each FK-PK pair as a directed edge. Additionally, non-FK/PK column values are converted to node features assigned

to the respective rows. Per this construction, row 𝑻𝑘
𝑖:
defines a node of type 𝑣 = 𝑘 . Similarly, if 𝑻𝑘

:𝑗
represents an FK column of table 𝑘

8
https://web.archive.org/web/20230529190325mp_/https://relational.fit.cvut.cz/dataset/Airline

9
https://web.archive.org/web/20230128061200/https://relational.fit.cvut.cz/dataset/Accidents

10
https://web.archive.org/web/20231025130213/https://relational.fit.cvut.cz/dataset/IMDb
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Dataset / Task GML Epoch Time DFS Time (featuretools) DFS Time (ours)

AVS / Retent. 24.2 647.4 175.8

OB (downsampled) / CTR 5.74 16682.43 9.78

DN / CTR 45.7 > 10 hours 287

DN / Purch. 15.7 > 10 hours 417

RR / CTR 12.7 > 10 hours 1372

AB / Churn 134 > 10 hours 25402

AB / Rating 31.9 > 10 hours 3746

AB / Purch. 128 > 10 hours 3773

SE / Churn 15.2 > 10 hours 2802

SE / Popul. 62.7 > 10 hours 2241

MAG / Venue 26.2 6249 3812

MAG / Cite 40.6 35 99

SZ / Charge 24.2 121.4 12.6

SZ / Prepay 60.9 298.2 16.2

Table 10: Running Time of the GML and DFS pipeline (sec).
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Figure 11: Illustration of Row2Node, Row2N/E and their extended version that includes dummy table.

that references 𝑻𝑘
′

:𝑗 ′ , the PK column 𝑗 ′ of table 𝑘′, then there exists an edge of type 𝑒 = 𝑘𝑘′ between the corresponding nodes whenever

𝑻𝑘
𝑖 𝑗

→ 𝑻𝑘
′
𝑖′ 𝑗 ′ for row indices 𝑖 and 𝑖′. We will refer to this graph composition as Row2Node for convenience. As a relatively straightforward

procedure for extracting graphs from RDBs, Row2Node was proposed in [15] with ongoing application by others [23, 77, 79]. Figure 11

visualizes the graph constructed by Row2Node from an RDB of three tables: “View", “Purchase" and “Product".

G.2 Row2N/E
As an alternative to Row2Node, we may relax the restriction that every row must be exclusively converted to a node. Instead, for tables

with two FK columns, i.e., 𝑻𝑘
:𝑗
and 𝑻𝑘

:𝑗 ′ are both FKs with 𝑗 ≠ 𝑗 ′, we convert each row to an edge connecting the corresponding rows being

indexed by the FK pair. More concretely, each such {𝑻𝑘
𝑖 𝑗
, 𝑻𝑘
𝑖 𝑗 ′ } pair defines an edge of type 𝑒 = 𝑘′𝑘′′ between rows of tables 𝑻𝑘

′
and 𝑻𝑘

′′
as

pointed to by 𝑻𝑘
:𝑗
and 𝑻𝑘

:𝑗 ′ respectively. The remaining columns of 𝑻𝑘 are designated as edge features. Overall, the intuition here is simply

that tables with multiple FKs can be treated as though they were natively a tabular representation of edges.

Additionally, to ensure edges exclusively connect to nodes instead of edges as required in forming a canonical graph, we only convert rows

as described above to edges if table 𝑻𝑘 has no PK column. If it were to have both two FK columns and a PK column, then a referencing FK in

yet another table could lead to edge-edge connections which are disallowed by convention.
11

Additionally, we may expand this procedure to

generate arbitrary hyperedges [5] by analogously handling tables with three or more FK columns. We henceforth refer to this conversion

procedure as Row2N/E (short for Row-to-Node-or-Edge), as each row is now selectively treated as either a node or edge/hyperedge depending

11
In other words, if a table has a PK, then edges from other tables may point to each row; however, if there are also two FK columns, and each row is also converted to an edge, the

result would be disallowed edge-edge connections.



on the presence of multiple FKs. And if no table within D has multiple FKs (along with no PK column), then Row2Node and Row2N/E are

equivalent. Figure 11 illustrates such a case since both “View" and “Purchases" contain only one foreign key (i.e., “ItemID"). We will see their

difference later when more foreign keys are introduced (such as by adding dummy tables).

G.3 Comparative Analysis
In general there is no ground-truth “correct" graph that can be extracted from an RDB, and hence, no a priori gold standard under which we

might conclusively prefer Row2Node or Row2N/E, or even something else altogether (e.g., see Section G.4). Nonetheless, there does exist one

relevant sanity check with the potential to influence our preferences here. This check relates to a precise form of cycle consistency as follows.

Suppose we are given an initial graph G as well as a general mapping A that converts this graph to an RDB via D = A(G). We may then

apply either Row2Node or Row2N/E to D and determine if we recover the original G. Ideally, we would like A to output RDBs in some type

of canonical form; otherwise achieving the aforementioned cycle consistency may either be impossible or underdetermined via Row2Node

or Row2N/E. As a trivial hypothetical example, the case where A simply converts every edge of G to a row within a single table specifying

the head node, tail node, relation type, and any associated node/edge features. While the graph is fully specified, it also follows that 𝐾 = 1,

there are no FKs pointing to other tables, and both Row2Node and Row2N/E will degenerate to a disconnected graph with a single node type.

Hence any meaningful cycle-consistency check must be predicated on a principled choice for A that precludes such specious possibilities.

Fortunately though, there exist well-established methods for normalizing RDBs into canonical forms [25] that naturally filter out these

types of degeneracy and can be repurposed to actualize a reasonable idempotency check.

Proposition 1. Let G denote a heterogeneous graph and A a mapping that converts G to a degenerate single table RDB as described above.
Furthermore, let Norm denote an operator that normalizes an RDB according to the first through forth database normal forms.12 Then Row2Node
and Row2N/E as specified in Sections G.1 and G.2 are such that

G ≠ Row2Node [ Norm ( A[G] )]
G = Row2N/E [ Norm ( A[G] )] . (12)

Informally, Proposition 1 demonstrates that Row2N/E has an advantage in terms of recovering a ground-truth graph that has been

converted to a properly normalized/standardized RDB as quantified by well-studied database normal forms. Of course we cannot necessarily

infer from this that Row2N/E is broadly preferable. Even so, this result is one noteworthy attribute worthy of consideration. Beyond this, we

remark that Row2Node and Row2N/E can also be related through the notion of star-graph expansions of hypergraphs [82] via

Row2Node [ Norm ( A[G] )]
= Star ( Row2N/E [ Norm ( A[G] )] ) . (13)

In this expression Star(·) produces the star-graph expansion of an arbitrary input hypergraph G. Although star-graph expansions have

limitations [72], they are nonetheless widely used to process hypergraphs [1, 70]. That being said, as will be discussed in Section 3.3

and empirically tested in Section 6, predictive baseline models built upon Row2Node and Row2N/E need not perform the same even

under the restrictive setting of input RDBs constructed as D = Norm ( A[G] ); likewise for more diverse regimes/RDBs where generally

Row2Node [D] ≠ Star ( Row2N/E [D] ) .

G.4 Extension to Row2Node+ and Row2N/E+
Thus far we have assumed that when converting an RDB to a graph, edges are exclusively formed by known PK-FK pairs. But practical

use cases (as reflected in the benchmarks we will introduce later) sometimes warrant the invocation of another less obvious type of edge

formation. Specifically, although not explicitly labeled as such, within an RDB there may exist one or more table columns with the signature

of an FK (e.g., elements are a high cardinality categorical index or related), but with no associated PK column in another table. Moreover, the

RDB may also contain a second column with elements drawn from the same high-cardinality domain; this additional column may reside

in either the same or a different table as the original. Together these pseudo FK columns can be converted to actual FKs by introducing a

new dummy table, with just a single column treated as a PK, defined by the unique corresponding elements of the pseudo FKs. In this way

extracted graphs have additional pathways for sharing information across or within the original tables by passing through nodes associated

with the new dummy table.

Note that this conversion of pseudo FK pairs (or the natural extension to arbitrary FK tuples) can be integrated within either Row2Node

or Row2N/E, and we henceforth refer to these variants as Row2Node+ and Row2N/E+ respectively. In the example depicted in Figure 11,

the column “UserID" is a pseudo FK, which if converted to an actual FK, gives birth to an additional dummy “User" table. Consequently,

Row2N/E+ further treats entries in the “View" and “Purchase" table as edges, resulting in different graph constructed than Row2Node+.

Please see Appendix B.1 for ablations using both Row2Node+ and Row2N/E+.

In practice there is no strict objective standard for when to convert pseudo FK tuples into dummy tables and new FK-PK pairs as described

above; however, the process of finding candidates for such a conversion closely mirrors the notion of Joinable Table Discovery (JTD) [19].

12
We remark that the first four normal forms are the most common normalizations used in practice [52]. For further details on database normalization and normal form definitions,

we refer the reader to [25].



Although JTD is often applied on data lakes with a vast number of tables, the same logic can also be applied on RDBs to discover such pseudo

FK tuples, if one treats RDB as a "small" data lake.

G.5 Proof of Proposition 1
Given a heterogeneous attributed graph G, we can always construct a single table

¯𝑻 = A(G), via an injective mapping A, such that the 𝑖-th

row satisfies

¯𝑻 𝑖: = [𝑢,𝑤, 𝑣𝑢 , 𝑣𝑤 , 𝑥𝑢 , 𝑥𝑤 , 𝑒𝑖 , 𝑧𝑖 ], (14)

where𝑢 and𝑤 represent the head and tail node indeces of edge 𝑖 ∈ E. Moreover, with some abuse of notation {𝑣𝑢 , 𝑣𝑤} and {𝑥𝑢 , 𝑥𝑤} represent
the corresponding node types and node features, respectively. Meanwhile, 𝑒𝑖 and 𝑧𝑖 indicate the relation type and (optional) feature of edge 𝑖 .

Additionally, as G is a heterogeneous graph (as opposed to multi-graph), each triplet {𝑢,𝑤, 𝑒𝑖 } of head node, tail node, and relation type is

unique and serves as a candidate key for the table. (Note that node and edge features, as well as node types, cannot contribute to a candidate

key as we make no assumptions on their values, e.g., they could all in principle be equal or non-distinguishing.)

From here, by assumption
¯𝑻 will have unique rows such that it satisfies the criteria for an unormalized form (UNF), i.e., no duplicated

rows. Next, provided we treat each node and edge feature as a single entity, then the first normal form (1NF) is satisfied (if we were to treat

each feature as a set or nested record, technically it would not, but for our purposes this distinction is inconsequential). Proceeding further,

to address the second normal form (2NF) we examine all non-candidate key attributes to determine which are dependent on the entire

candidate key and which are not. Clearly 𝑧𝑖 does in fact depend on the entire candidate key, and so it satisfies 2NF. Notably though, 𝑥𝑢 and

𝑣𝑢 only depend on 𝑢, while 𝑥𝑤 and 𝑣𝑤 only depend on𝑤 ; in neither case is there dependency on the entire candidate key. Hence to satisfy

2NF, we must form a second table to record non-duplicated records of node features and node types, and remove these attributes from
¯𝑻 .

Hence rows of
¯𝑻 simplify to

¯𝑻 𝑖: = [𝑢,𝑤, 𝑒𝑖 , 𝑧𝑖 ] (15)

and we introduce the node attribute table
¯𝑻𝑛𝑜𝑑𝑒 with row 𝑢 given by

¯𝑻𝑛𝑜𝑑𝑒𝑢:
= [𝑢, 𝑣𝑢 , 𝑥𝑢 ] . (16)

Both
¯𝑻𝑛𝑜𝑑𝑒 and ¯𝑻 now satisfy 2NF, with 𝑢 serving as the primary key for the former, while 𝑢 and𝑤 now independently serve as foreign keys

for the latter. Next, as there are no transitive functional dependencies, nor multivalued dependencies, the third normal form 3NF and forth

normal form (4NF) are trivially satisfied. We may therefore conclude that our new tables satisfy

{ ¯𝑻 , ¯𝑻𝑛𝑜𝑑𝑒 } = Norm ( A[G] ) (17)

per our previous definitions.

From here we observe that Row2Node will introduce new nodes associated with each row of both ¯𝑻 and
¯𝑻𝑛𝑜𝑑𝑒 , with the former not

present in the original G. From this it follows that

G ≠ Row2Node [ Norm ( A[G] )] . (18)

As for Row2N/E, because of the newly-introduced FK-PK relationship, it naturally follows that

G = Row2N/E [ Norm ( A[G] )] , (19)

completing the proof.
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